Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2000, Volume 64, Issue 6, Pages 1197–1215
DOI: https://doi.org/10.1070/im2000v064n06ABEH000313
(Mi im313)
 

This article is cited in 20 scientific papers (total in 20 papers)

The absence of global positive solutions of systems of semilinear elliptic inequalities in cones

G. G. Laptev
References:
Abstract: Let $K$ be a cone in $\mathbb R^N$, $N\geqslant 2$. We establish conditions for the absence of global non-trivial non-negative solutions of semilinear elliptic inequalities and systems of inequalities of the form
$$ -\operatorname{div}(|x|^\alpha Du)\geqslant |x|^\beta u^q, \qquad u\big|_{\partial K}=0. $$
We find the critical exponent $q^*$ that divides the domains of existence of these solutions from those of their absence. We prove that in the limiting case $q=q^*$ there are no solutions. The method is to multiply the system by a special factor and integrate the inequalities thus obtained.
Received: 18.05.1999
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2000, Volume 64, Issue 6, Pages 107–124
DOI: https://doi.org/10.4213/im313
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: G. G. Laptev, “The absence of global positive solutions of systems of semilinear elliptic inequalities in cones”, Izv. RAN. Ser. Mat., 64:6 (2000), 107–124; Izv. Math., 64:6 (2000), 1197–1215
Citation in format AMSBIB
\Bibitem{Lap00}
\by G.~G.~Laptev
\paper The absence of global positive solutions of systems of semilinear elliptic inequalities in cones
\jour Izv. RAN. Ser. Mat.
\yr 2000
\vol 64
\issue 6
\pages 107--124
\mathnet{http://mi.mathnet.ru/im313}
\crossref{https://doi.org/10.4213/im313}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1817251}
\zmath{https://zbmath.org/?q=an:1013.35041}
\transl
\jour Izv. Math.
\yr 2000
\vol 64
\issue 6
\pages 1197--1215
\crossref{https://doi.org/10.1070/im2000v064n06ABEH000313}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000167957400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-12344283773}
Linking options:
  • https://www.mathnet.ru/eng/im313
  • https://doi.org/10.1070/im2000v064n06ABEH000313
  • https://www.mathnet.ru/eng/im/v64/i6/p107
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:484
    Russian version PDF:217
    English version PDF:20
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024