Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2000, Volume 64, Issue 6, Pages 1153–1195
DOI: https://doi.org/10.1070/IM2000v064n06ABEH000312
(Mi im312)
 

This article is cited in 8 scientific papers (total in 8 papers)

Generic coverings of the plane with $A$-$D$-$E$-singularities

V. S. Kulikova, Vik. S. Kulikovb

a Moscow State Academy of Printing Arts
b Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We investigate representations of an algebraic surface $X$ with $A$-$D$-$E$-singularities as a generic covering $f\colon X\to\mathbb{P}^2$, that is, a finite morphism which has at most folds and pleats apart from singular points and is isomorphic to the projection of the surface $z^2=h(x,y)$ onto the plane $x$$y$ near each singular point, and whose branch curve $B\subset\mathbb{P}^2$ has only nodes and ordinary cusps except for singularities originating from the singularities of $X$. It is regarded as folklore that a generic projection of a non-singular surface $X\subset\mathbb{P}^r$ is of this form. In this paper we prove this result in the case when the embedding of a surface $X$ with $A$-$D$-$E$-singularities is the composite of the original one and a Veronese embedding. We generalize the results of [6], which considers Chisini's conjecture on the unique reconstruction of $f$ from the curve $B$. To do this, we study fibre products of generic coverings. We get the main inequality bounding the degree of the covering in the case when there are two inequivalent coverings with branch curve $B$. This inequality is used to prove Chisini's conjecture for $m$-canonical coverings of surfaces of general type for $m\geqslant 5$.
Received: 27.07.1999
Bibliographic databases:
Document Type: Article
MSC: 14E20
Language: English
Original paper language: Russian
Citation: V. S. Kulikov, Vik. S. Kulikov, “Generic coverings of the plane with $A$-$D$-$E$-singularities”, Izv. Math., 64:6 (2000), 1153–1195
Citation in format AMSBIB
\Bibitem{KulKul00}
\by V.~S.~Kulikov, Vik.~S.~Kulikov
\paper Generic coverings of the plane with $A$-$D$-$E$-singularities
\jour Izv. Math.
\yr 2000
\vol 64
\issue 6
\pages 1153--1195
\mathnet{http://mi.mathnet.ru//eng/im312}
\crossref{https://doi.org/10.1070/IM2000v064n06ABEH000312}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1817250}
\zmath{https://zbmath.org/?q=an:1012.14004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000167957400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746545908}
Linking options:
  • https://www.mathnet.ru/eng/im312
  • https://doi.org/10.1070/IM2000v064n06ABEH000312
  • https://www.mathnet.ru/eng/im/v64/i6/p65
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:918
    Russian version PDF:241
    English version PDF:39
    References:110
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024