Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1995, Volume 59, Issue 4, Pages 677–720
DOI: https://doi.org/10.1070/IM1995v059n04ABEH000030
(Mi im30)
 

This article is cited in 5 scientific papers (total in 5 papers)

Extensions of the ring of continuous functions generated by regular, countably-divisible, complete rings of quotients, and their corresponding pre-images

V. K. Zakharov

St. Petersburg State University of Technology and Design
References:
Abstract: In this article we consider metaregular and countably-divisible extensions generated by a regular quotient ring of the ring of continuous functions in the spirit of Fine–Gillman–Lambek. The corresponding pre-images of maximal ideals are considered in connection with these extensions. These pre-images are called small absolutes and a-nonconnected coverings. To characterize these structures a new topological structure is introduced for Aleksandrov spaces with a precovering. In this connection we introduce the notion of a non-connected covering of step type. In the first part of the article we give a characterization of a small absolute as a relatively countably non-connected covering (Theorem 1). We also give a description of the absolute (Theorem 2) and of Aleksandrov pre-images of maximal ideals of Hausdorff–Sierpinski ring extensions (Theorem 3). In the second part we give a characterization of an aa-non-connected pre-image as an absolutely countably non-connected covering (Theorem 4). Descriptions are also given of Baire and Borel pre-images generated by the classical Baire and Borel measurable extensions (Theorem 5).
Received: 14.11.1993
Bibliographic databases:
MSC: 13B30, 46E25, 54H10
Language: English
Original paper language: Russian
Citation: V. K. Zakharov, “Extensions of the ring of continuous functions generated by regular, countably-divisible, complete rings of quotients, and their corresponding pre-images”, Izv. Math., 59:4 (1995), 677–720
Citation in format AMSBIB
\Bibitem{Zak95}
\by V.~K.~Zakharov
\paper Extensions of the ring of continuous functions generated by regular, countably-divisible, complete rings of quotients, and their corresponding pre-images
\jour Izv. Math.
\yr 1995
\vol 59
\issue 4
\pages 677--720
\mathnet{http://mi.mathnet.ru/eng/im30}
\crossref{https://doi.org/10.1070/IM1995v059n04ABEH000030}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1356349}
\zmath{https://zbmath.org/?q=an:0886.54015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169556400003}
Linking options:
  • https://www.mathnet.ru/eng/im30
  • https://doi.org/10.1070/IM1995v059n04ABEH000030
  • https://www.mathnet.ru/eng/im/v59/i4/p15
  • This publication is cited in the following 5 articles:
    1. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Descriptive spaces and proper classes of functions”, J. Math. Sci., 213:2 (2016), 163–200  mathnet  crossref  mathscinet
    2. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Postclassical families of functions proper for descriptive and prescriptive spaces”, J. Math. Sci., 221:3 (2017), 360–383  mathnet  crossref  mathscinet
    3. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “The Riesz–Radon–Fréchet problem of characterization of integrals”, Russian Math. Surveys, 65:4 (2010), 741–765  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. V. K. Zakharov, A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space. II”, Izv. Math., 66:6 (2002), 1087–1101  mathnet  crossref  crossref  mathscinet  zmath
    5. V. K. Zakharov, A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space”, Izv. Math., 63:5 (1999), 881–921  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:450
    Russian version PDF:140
    English version PDF:48
    References:96
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025