Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2000, Volume 64, Issue 3, Pages 583–600
DOI: https://doi.org/10.1070/im2000v064n03ABEH000292
(Mi im292)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the summability and convergence of non-harmonic Fourier series

A. M. Sedletskii
References:
Abstract: We consider systems of exponentials that are orthogonal to measures $d\sigma$ of a special form on $(-a,a)$. Under certain conditions on the summation method, these systems form summation bases $L^p(-a,a)$ and in $C_0$ (the subspace of $C[-a,a]$ orthogonal to $d\sigma$). With respect to these systems, Lipschitzian functions in $C_0$ are expanded into non-harmonic Fourier series that converge uniformly on $[-a,a]$.
Received: 03.11.1998
Bibliographic databases:
MSC: 42C15
Language: English
Original paper language: Russian
Citation: A. M. Sedletskii, “On the summability and convergence of non-harmonic Fourier series”, Izv. Math., 64:3 (2000), 583–600
Citation in format AMSBIB
\Bibitem{Sed00}
\by A.~M.~Sedletskii
\paper On the summability and convergence of non-harmonic Fourier series
\jour Izv. Math.
\yr 2000
\vol 64
\issue 3
\pages 583--600
\mathnet{http://mi.mathnet.ru//eng/im292}
\crossref{https://doi.org/10.1070/im2000v064n03ABEH000292}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1781858}
\zmath{https://zbmath.org/?q=an:0980.42025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165148600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746981227}
Linking options:
  • https://www.mathnet.ru/eng/im292
  • https://doi.org/10.1070/im2000v064n03ABEH000292
  • https://www.mathnet.ru/eng/im/v64/i3/p151
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024