Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 1, Pages 151–165
DOI: https://doi.org/10.1070/IM2010v074n01ABEH002483
(Mi im2791)
 

This article is cited in 31 scientific papers (total in 31 papers)

Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity

E. A. Sevost'yanov

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
References:
Abstract: We prove that sets of zero modulus with weight $Q$ (in particular, isolated singularities) are removable for discrete open $Q$-maps $f\colon D\to\overline{\mathbb R}{}^n$ if the function $Q(x)$ has finite mean oscillation or a logarithmic singularity of order not exceeding $n-1$ on the corresponding set. We obtain analogues of the well-known Sokhotskii–Weierstrass theorem and also of Picard's theorem. In particular, we show that in the neighbourhood of an essential singularity, every discrete open $Q$-map takes any value infinitely many times, except possibly for a set of values of zero capacity.
Keywords: maps with bounded distortion and their generalizations, discrete open maps, removing singularities of maps, essential singularities, Picard's theorem, Sokhotskii's theorem, Liouville's theorem.
Received: 14.04.2008
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2010, Volume 74, Issue 1, Pages 159–174
DOI: https://doi.org/10.4213/im2791
Bibliographic databases:
UDC: 517.5
MSC: Primary 30C65; Secondary 57R45
Language: English
Original paper language: Russian
Citation: E. A. Sevost'yanov, “Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity”, Izv. RAN. Ser. Mat., 74:1 (2010), 159–174; Izv. Math., 74:1 (2010), 151–165
Citation in format AMSBIB
\Bibitem{Sev10}
\by E.~A.~Sevost'yanov
\paper Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 1
\pages 159--174
\mathnet{http://mi.mathnet.ru/im2791}
\crossref{https://doi.org/10.4213/im2791}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2655240}
\zmath{https://zbmath.org/?q=an:1189.30056}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..151S}
\elib{https://elibrary.ru/item.asp?id=20358712}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 1
\pages 151--165
\crossref{https://doi.org/10.1070/IM2010v074n01ABEH002483}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276747800003}
\elib{https://elibrary.ru/item.asp?id=15448888}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950314822}
Linking options:
  • https://www.mathnet.ru/eng/im2791
  • https://doi.org/10.1070/IM2010v074n01ABEH002483
  • https://www.mathnet.ru/eng/im/v74/i1/p159
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:727
    Russian version PDF:199
    English version PDF:20
    References:82
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024