Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2000, Volume 64, Issue 1, Pages 193–206
DOI: https://doi.org/10.1070/im2000v064n01ABEH000279
(Mi im279)
 

This article is cited in 2 scientific papers (total in 2 papers)

Abelian monopoles: the case of a positive-dimensional moduli space

N. A. Tyurin

Moscow State University of Transportation
References:
Abstract: In this paper we consider (in the framework of the general Seiberg–Witten theory) the case when the moduli space of solutions of the Seiberg–Witten equations has positive even dimension. We describe a connection between the Seiberg–Witten invariants of a given manifold $X$ and those of the connected sum $Y=X \# d\overline{\mathbb{CP}}^2$ where $d=(1/2)\operatorname{v.dim}\mathcal M_{SW}$. We introduce the notion of a complex structure with degeneration (based on the connection between spinor geometry and complex geometry) and generalize the notion of a pseudoholomorphic curve to the case when the underlying manifold a priori has no almost complex structure.
Received: 02.02.1999
Bibliographic databases:
MSC: 53C07
Language: English
Original paper language: Russian
Citation: N. A. Tyurin, “Abelian monopoles: the case of a positive-dimensional moduli space”, Izv. Math., 64:1 (2000), 193–206
Citation in format AMSBIB
\Bibitem{Tyu00}
\by N.~A.~Tyurin
\paper Abelian monopoles: the case of a~positive-dimensional moduli space
\jour Izv. Math.
\yr 2000
\vol 64
\issue 1
\pages 193--206
\mathnet{http://mi.mathnet.ru//eng/im279}
\crossref{https://doi.org/10.1070/im2000v064n01ABEH000279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1752585}
\zmath{https://zbmath.org/?q=an:0965.58017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087745000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747013722}
Linking options:
  • https://www.mathnet.ru/eng/im279
  • https://doi.org/10.1070/im2000v064n01ABEH000279
  • https://www.mathnet.ru/eng/im/v64/i1/p197
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:359
    Russian version PDF:194
    English version PDF:22
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024