Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 3, Pages 481–499
DOI: https://doi.org/10.1070/IM2010v074n03ABEH002495
(Mi im2785)
 

This article is cited in 35 scientific papers (total in 35 papers)

Spaces and maps of idempotent measures

M. M. Zarichnyi

Ivan Franko National University of L'viv
References:
Abstract: We prove that the weak* topologization of the set of all idempotent measures (Maslov measures) on compact Hausdorff spaces defines a functor on the category $\operatorname{\mathbf{Comp}}$ of compact Hausdorff spaces, and this functor is normal in the sense of E. V. Shchepin; in particular, it has many properties in common with the probability measure functor and the hyperspace functor. Moreover, we establish that this functor defines a monad in the category $\operatorname{\mathbf{Comp}}$, and prove that the idempotent measure monad contains the hyperspace monad as a submonad. For the space of idempotent measures there is an analogue of the Milyutin map (that is, of a continuous map of compact Hausdorff spaces which admits a regular averaging operator for spaces of continuous functions). Using the assertion of the existence of Milyutin maps for idempotent measures, we prove that the idempotent measure functor is open, that is, it preserves the class of open surjective maps. We also prove that, in contrast to the case of probability measure spaces, the correspondence assigning to any pair of idempotent measures the set of measures on their product which have the given marginals is not continuous.
Keywords: idempotent measure (Maslov measure), compact Hausdorff space, open map, Milyutin map, monad.
Received: 01.04.2008
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2010, Volume 74, Issue 3, Pages 45–64
DOI: https://doi.org/10.4213/im2785
Bibliographic databases:
Document Type: Article
UDC: 515.122.5+512.582.2
MSC: Primary 18B30; Secondary 12K10, 16Y60, 54B20, 60B05
Language: English
Original paper language: Russian
Citation: M. M. Zarichnyi, “Spaces and maps of idempotent measures”, Izv. Math., 74:3 (2010), 481–499
Citation in format AMSBIB
\Bibitem{Zar10}
\by M.~M.~Zarichnyi
\paper Spaces and maps of idempotent measures
\jour Izv. Math.
\yr 2010
\vol 74
\issue 3
\pages 481--499
\mathnet{http://mi.mathnet.ru//eng/im2785}
\crossref{https://doi.org/10.1070/IM2010v074n03ABEH002495}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2682371}
\zmath{https://zbmath.org/?q=an:1220.18002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..481Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280306100003}
\elib{https://elibrary.ru/item.asp?id=20425208}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049341036}
Linking options:
  • https://www.mathnet.ru/eng/im2785
  • https://doi.org/10.1070/IM2010v074n03ABEH002495
  • https://www.mathnet.ru/eng/im/v74/i3/p45
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:769
    Russian version PDF:327
    English version PDF:22
    References:83
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024