Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 5, Pages 893–920
DOI: https://doi.org/10.1070/IM2009v073n05ABEH002467
(Mi im2772)
 

This article is cited in 16 scientific papers (total in 16 papers)

Semiorthogonal decompositions of derived categories of equivariant coherent sheaves

A. Elagin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Let $X$ be an algebraic variety with an action of an algebraic group $G$. Suppose that $X$ has a full exceptional collection of sheaves and these sheaves are invariant under the action of the group. We construct a semiorthogonal decomposition of the bounded derived category of $G$-equivariant coherent sheaves on $X$ into components that are equivalent to the derived categories of twisted representations of $G$. If the group is finite or reductive over an algebraically closed field of characteristic 0, this gives a full exceptional collection in the derived equivariant category. We apply our results to particular varieties such as projective spaces, quadrics, Grassmannians and del Pezzo surfaces.
Keywords: semiorthogonal decomposition, exceptional collection, twisted sheaf.
Received: 21.02.2008
Bibliographic databases:
UDC: 512.732
MSC: 14F08, 14M15, 18E30
Language: English
Original paper language: Russian
Citation: A. Elagin, “Semiorthogonal decompositions of derived categories of equivariant coherent sheaves”, Izv. Math., 73:5 (2009), 893–920
Citation in format AMSBIB
\Bibitem{Ela09}
\by A.~Elagin
\paper Semiorthogonal decompositions of derived categories of equivariant coherent sheaves
\jour Izv. Math.
\yr 2009
\vol 73
\issue 5
\pages 893--920
\mathnet{http://mi.mathnet.ru//eng/im2772}
\crossref{https://doi.org/10.1070/IM2009v073n05ABEH002467}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584227}
\zmath{https://zbmath.org/?q=an:1181.14021}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..893E}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272485400002}
\elib{https://elibrary.ru/item.asp?id=20358693}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71449104468}
Linking options:
  • https://www.mathnet.ru/eng/im2772
  • https://doi.org/10.1070/IM2009v073n05ABEH002467
  • https://www.mathnet.ru/eng/im/v73/i5/p37
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024