Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2000, Volume 64, Issue 1, Pages 143–171
DOI: https://doi.org/10.1070/im2000v064n01ABEH000277
(Mi im277)
 

This article is cited in 11 scientific papers (total in 12 papers)

Wavelets in spaces of harmonic functions

Yu. N. Subbotin, N. I. Chernykh

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: Using Meyer's bases of wavelets [1], we construct orthogonal bases of wavelets in the spaces $h_p$ $(1\leqslant p\leqslant \infty)$ of functions harmonic in the unit disc $|z|<1$ or in the annulus $0<\rho<|z|<1$. The partial sums of the Fourier series with respect to these bases possess approximating properties comparable with the best approximations by trigonometric polynomials.
Received: 20.04.1998
Bibliographic databases:
MSC: 42C15
Language: English
Original paper language: Russian
Citation: Yu. N. Subbotin, N. I. Chernykh, “Wavelets in spaces of harmonic functions”, Izv. Math., 64:1 (2000), 143–171
Citation in format AMSBIB
\Bibitem{SubChe00}
\by Yu.~N.~Subbotin, N.~I.~Chernykh
\paper Wavelets in spaces of harmonic functions
\jour Izv. Math.
\yr 2000
\vol 64
\issue 1
\pages 143--171
\mathnet{http://mi.mathnet.ru//eng/im277}
\crossref{https://doi.org/10.1070/im2000v064n01ABEH000277}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1752583}
\zmath{https://zbmath.org/?q=an:0968.42025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087745000005}
\elib{https://elibrary.ru/item.asp?id=13334321}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746981764}
Linking options:
  • https://www.mathnet.ru/eng/im277
  • https://doi.org/10.1070/im2000v064n01ABEH000277
  • https://www.mathnet.ru/eng/im/v64/i1/p145
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024