Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 3, Pages 437–453
DOI: https://doi.org/10.1070/IM2009v073n03ABEH002453
(Mi im2759)
 

This article is cited in 1 scientific paper (total in 1 paper)

Projective embeddings of homogeneous spaces with small boundary

I. V. Arzhantsev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study open equivariant projective embeddings of homogeneous spaces such that the complement of the open orbit has codimension at least 2. We establish a criterion for the existence of such an embedding, prove that the set of isomorphism classes of such embeddings is finite, and give a construction of the embeddings in terms of Geometric Invariant Theory. A generalization of Cox's construction and the theory of bunched rings enable us to describe in combinatorial terms the basic geometric properties of embeddings with small boundary.
Keywords: algebraic group, homogeneous space, epimorphic subgroup, Cox ring.
Received: 11.01.2008
Revised: 31.08.2008
Bibliographic databases:
UDC: 512.745.2
MSC: 14L24, 14L30, 14M17
Language: English
Original paper language: Russian
Citation: I. V. Arzhantsev, “Projective embeddings of homogeneous spaces with small boundary”, Izv. Math., 73:3 (2009), 437–453
Citation in format AMSBIB
\Bibitem{Arz09}
\by I.~V.~Arzhantsev
\paper Projective embeddings of homogeneous spaces with small boundary
\jour Izv. Math.
\yr 2009
\vol 73
\issue 3
\pages 437--453
\mathnet{http://mi.mathnet.ru//eng/im2759}
\crossref{https://doi.org/10.1070/IM2009v073n03ABEH002453}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553087}
\zmath{https://zbmath.org/?q=an:1173.14034}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..437A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268622900001}
\elib{https://elibrary.ru/item.asp?id=20358679}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350630308}
Linking options:
  • https://www.mathnet.ru/eng/im2759
  • https://doi.org/10.1070/IM2009v073n03ABEH002453
  • https://www.mathnet.ru/eng/im/v73/i3/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024