Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 6, Pages 1077–1100
DOI: https://doi.org/10.1070/IM2009v073n06ABEH002473
(Mi im2758)
 

This article is cited in 17 scientific papers (total in 17 papers)

Embeddings of model subspaces of the Hardy space: compactness and Schatten–von Neumann ideals

A. D. Baranov

Saint-Petersburg State University
References:
Abstract: We study properties of the embedding operators of model subspaces $K^p_{\Theta}$ (defined by inner functions) in the Hardy space $H^p$ (coinvariant subspaces of the shift operator). We find a criterion for the embedding of $K^p_{\Theta}$ in $L^p(\mu)$ to be compact similar to the Volberg–Treil theorem on bounded embeddings, and give a positive answer to a question of Cima and Matheson. The proof is based on Bernstein-type inequalities for functions in $K^p_{\Theta}$. We investigate measures $\mu$ such that the embedding operator belongs to some Schatten–von Neumann ideal.
Keywords: Hardy space, inner function, embedding theorem, Carleson measure.
Received: 10.01.2008
Bibliographic databases:
UDC: 517.53
MSC: 30D55, 47A45, 47B37
Language: English
Original paper language: Russian
Citation: A. D. Baranov, “Embeddings of model subspaces of the Hardy space: compactness and Schatten–von Neumann ideals”, Izv. Math., 73:6 (2009), 1077–1100
Citation in format AMSBIB
\Bibitem{Bar09}
\by A.~D.~Baranov
\paper Embeddings of model subspaces of the Hardy space: compactness
and Schatten--von~Neumann ideals
\jour Izv. Math.
\yr 2009
\vol 73
\issue 6
\pages 1077--1100
\mathnet{http://mi.mathnet.ru//eng/im2758}
\crossref{https://doi.org/10.1070/IM2009v073n06ABEH002473}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2640976}
\zmath{https://zbmath.org/?q=an:1192.30015}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73.1077B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274926100001}
\elib{https://elibrary.ru/item.asp?id=20358699}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-74549146818}
Linking options:
  • https://www.mathnet.ru/eng/im2758
  • https://doi.org/10.1070/IM2009v073n06ABEH002473
  • https://www.mathnet.ru/eng/im/v73/i6/p3
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:821
    Russian version PDF:251
    English version PDF:18
    References:93
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024