Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 6, Pages 1111–1148
DOI: https://doi.org/10.1070/IM2009v073n06ABEH002475
(Mi im2753)
 

This article is cited in 8 scientific papers (total in 8 papers)

Time-asymptotic behaviour of a solution of the Cauchy initial-value problem for a conservation law with non-linear divergent viscosity

A. V. Gasnikov

Moscow Institute of Physics and Technology
References:
Abstract: We study the time-asymptotic behaviour of a solution of the Cauchy initial-value problem for a conservation law with non-linear divergent viscosity. We shall prove that when a bounded measurable initial function has limits at $\pm\infty$, a solution of the Cauchy initial-value problem converges uniformly to a system of waves consisting of travelling waves and rarefaction waves, where the phase shifts of the travelling waves are allowed to depend on time. The rate of convergence is estimated under additional conditions on the initial function.
Keywords: conservation law with non-linear divergent viscosity, equation of Burgers type, asymptotics of solutions, convergence in form, convergence on the phase plane, travelling wave, rarefaction wave, system of waves, maximum principle, comparison principle (on the phase plane), inequality of Kolmogorov type.
Received: 10.12.2007
Revised: 21.04.2008
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2009, Volume 73, Issue 6, Pages 39–76
DOI: https://doi.org/10.4213/im2753
Bibliographic databases:
UDC: 519.633
Language: English
Original paper language: Russian
Citation: A. V. Gasnikov, “Time-asymptotic behaviour of a solution of the Cauchy initial-value problem for a conservation law with non-linear divergent viscosity”, Izv. RAN. Ser. Mat., 73:6 (2009), 39–76; Izv. Math., 73:6 (2009), 1111–1148
Citation in format AMSBIB
\Bibitem{Gas09}
\by A.~V.~Gasnikov
\paper Time-asymptotic behaviour of a~solution of the Cauchy initial-value problem for a~conservation law with non-linear divergent viscosity
\jour Izv. RAN. Ser. Mat.
\yr 2009
\vol 73
\issue 6
\pages 39--76
\mathnet{http://mi.mathnet.ru/im2753}
\crossref{https://doi.org/10.4213/im2753}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2640978}
\zmath{https://zbmath.org/?q=an:05668379}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73.1111G}
\elib{https://elibrary.ru/item.asp?id=20358701}
\transl
\jour Izv. Math.
\yr 2009
\vol 73
\issue 6
\pages 1111--1148
\crossref{https://doi.org/10.1070/IM2009v073n06ABEH002475}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274926100003}
\elib{https://elibrary.ru/item.asp?id=15300730}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-74549223590}
Linking options:
  • https://www.mathnet.ru/eng/im2753
  • https://doi.org/10.1070/IM2009v073n06ABEH002475
  • https://www.mathnet.ru/eng/im/v73/i6/p39
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:931
    Russian version PDF:294
    English version PDF:29
    References:94
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024