Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 2, Pages 411–438
DOI: https://doi.org/10.1070/IM2010v074n02ABEH002491
(Mi im2735)
 

This article is cited in 2 scientific papers (total in 2 papers)

Rationality of the Poincaré series in Arnold's local problems of analysis

R. A. Sarkisyan

Finance Academy under the Government of the Russian Federation
References:
Abstract: For any smooth action of a Lie pseudo-group we construct a domain (in the corresponding infinite jet space) consisting of finitely many open sets (atoms) such that all points in each atom have the same rational Poincaré series. We also prove that these series can be calculated algorithmically.
Keywords: orbits of actions of diffeomorphism groups in jet spaces, dimensions of orbits, Poincaré series of dimensions of orbits, rationality of a series.
Received: 11.10.2007
Revised: 09.06.2008
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2010, Volume 74, Issue 2, Pages 195–224
DOI: https://doi.org/10.4213/im2735
Bibliographic databases:
Document Type: Article
UDC: 512.628.2
MSC: 53A55, 58A20
Language: English
Original paper language: Russian
Citation: R. A. Sarkisyan, “Rationality of the Poincaré series in Arnold's local problems of analysis”, Izv. Math., 74:2 (2010), 411–438
Citation in format AMSBIB
\Bibitem{Sar10}
\by R.~A.~Sarkisyan
\paper Rationality of the Poincar\'e series in Arnold's local problems of analysis
\jour Izv. Math.
\yr 2010
\vol 74
\issue 2
\pages 411--438
\mathnet{http://mi.mathnet.ru//eng/im2735}
\crossref{https://doi.org/10.1070/IM2010v074n02ABEH002491}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2675273}
\zmath{https://zbmath.org/?q=an:1205.53013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..411S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277164200006}
\elib{https://elibrary.ru/item.asp?id=20358720}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953860596}
Linking options:
  • https://www.mathnet.ru/eng/im2735
  • https://doi.org/10.1070/IM2010v074n02ABEH002491
  • https://www.mathnet.ru/eng/im/v74/i2/p195
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:496
    Russian version PDF:200
    English version PDF:17
    References:49
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024