Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 3, Pages 501–514
DOI: https://doi.org/10.1070/IM2010v074n03ABEH002496
(Mi im2728)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mixed volume forms and a complex equation of Monge–Ampère type on Kähler manifolds of positive curvature

V. N. Kokarev

Samara State University
References:
Abstract: We consider a generalization of the Calabi problem. In the analytic set-up on a Kähler manifold, it leads to a complex Monge–Ampère equation containing the mixed discriminant of the given and unknown metrics. We obtain sufficient conditions for its solubility in the case when the Kähler manifold is $\delta$-pinched ($\delta>1/2$).
Keywords: Kähler manifold, Monge–Ampère equation.
Received: 14.09.2007
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2010, Volume 74, Issue 3, Pages 65–78
DOI: https://doi.org/10.4213/im2728
Bibliographic databases:
Document Type: Article
UDC: 514.772
MSC: 32W20, 32Q15
Language: English
Original paper language: Russian
Citation: V. N. Kokarev, “Mixed volume forms and a complex equation of Monge–Ampère type on Kähler manifolds of positive curvature”, Izv. Math., 74:3 (2010), 501–514
Citation in format AMSBIB
\Bibitem{Kok10}
\by V.~N.~Kokarev
\paper Mixed volume forms and a complex equation of Monge--Amp\`ere type on K\"ahler manifolds of positive curvature
\jour Izv. Math.
\yr 2010
\vol 74
\issue 3
\pages 501--514
\mathnet{http://mi.mathnet.ru//eng/im2728}
\crossref{https://doi.org/10.1070/IM2010v074n03ABEH002496}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2682372}
\zmath{https://zbmath.org/?q=an:1200.32015}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..501K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280306100004}
\elib{https://elibrary.ru/item.asp?id=20425209}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049327807}
Linking options:
  • https://www.mathnet.ru/eng/im2728
  • https://doi.org/10.1070/IM2010v074n03ABEH002496
  • https://www.mathnet.ru/eng/im/v74/i3/p65
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:641
    Russian version PDF:224
    English version PDF:29
    References:72
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024