Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 5, Pages 921–937
DOI: https://doi.org/10.1070/IM2009v073n05ABEH002468
(Mi im2713)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the factorization of integral operators on spaces of summable functions

N. B. Engibaryan

Institute of Mathematics, National Academy of Sciences of Armenia
References:
Abstract: We consider the factorization $I-K=(I-U^+)(I-U^-)$, where $I$ is the identity operator, $K$ is an integral operator acting on some Banach space of functions summable with respect to a measure $\mu$ on $(a,b)\subset(-\infty,+\infty)$ continuous relative to the Lebesgue measure,
\begin{equation*} (Kf)(x)=\int^b_ak(x,t)f(t)\mu(dt),\qquad x\in(a,b), \end{equation*}
and $U^\pm$ are the desired Volterra operators. A necessary and sufficient condition is found for the existence of this factorization for a rather wide class of operators $K$ with positive kernels and for Hilbert–Schmidt operators.
Keywords: functions summable with respect to a measure, integral operators, Volterra factorization.
Received: 02.08.2007
Bibliographic databases:
UDC: 517.9
Language: English
Original paper language: Russian
Citation: N. B. Engibaryan, “On the factorization of integral operators on spaces of summable functions”, Izv. Math., 73:5 (2009), 921–937
Citation in format AMSBIB
\Bibitem{Eng09}
\by N.~B.~Engibaryan
\paper On the factorization of integral operators on spaces of summable functions
\jour Izv. Math.
\yr 2009
\vol 73
\issue 5
\pages 921--937
\mathnet{http://mi.mathnet.ru//eng/im2713}
\crossref{https://doi.org/10.1070/IM2009v073n05ABEH002468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584228}
\zmath{https://zbmath.org/?q=an:1181.45023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..921E}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272485400003}
\elib{https://elibrary.ru/item.asp?id=20358694}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71449083819}
Linking options:
  • https://www.mathnet.ru/eng/im2713
  • https://doi.org/10.1070/IM2009v073n05ABEH002468
  • https://www.mathnet.ru/eng/im/v73/i5/p67
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:680
    Russian version PDF:218
    English version PDF:21
    References:73
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024