Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 1, Pages 171–180
DOI: https://doi.org/10.1070/IM2009v073n01ABEH002442
(Mi im2710)
 

This article is cited in 3 scientific papers (total in 3 papers)

Affine synthesis in the space $L^2(\mathbb R^d)$

P. A. Terekhin

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: We establish some theorems on the representation of functions $f\in L^2(\mathbb R^d)$ by series of the form $f=\sum_{j\in\mathbb N}\sum_{k\in\mathbb Z^d}c_{j,k}\psi_{j,k}$ that are absolutely convergent with respect to the index $j$ (that is, $\sum_{j\in\mathbb N}\bigl\|\sum_{k\in\mathbb Z^d}c_{j,k}\psi_{j,k}\bigr\|_2<\infty$), where $\psi_{j,k}(x)=|{\det a_j}|^{1/2}\psi(a_jx-bk)$, $j\in\mathbb N$, $k\in\mathbb Z^d$, is an affine system of functions. We prove the validity of the Bui–Laugesen conjecture on the sufficiency of the Daubechies conditions for a positive solution of the affine synthesis problem in the space $L^2(\mathbb R^d)$. A constructive solution is given for this problem under a localization of the Daubechies conditions.
Keywords: representation of functions by series, affine system, affine synthesis.
Received: 25.07.2007
Bibliographic databases:
UDC: 517.51
Language: English
Original paper language: Russian
Citation: P. A. Terekhin, “Affine synthesis in the space $L^2(\mathbb R^d)$”, Izv. Math., 73:1 (2009), 171–180
Citation in format AMSBIB
\Bibitem{Ter09}
\by P.~A.~Terekhin
\paper Affine synthesis in the space $L^2(\mathbb R^d)$
\jour Izv. Math.
\yr 2009
\vol 73
\issue 1
\pages 171--180
\mathnet{http://mi.mathnet.ru//eng/im2710}
\crossref{https://doi.org/10.1070/IM2009v073n01ABEH002442}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2503125}
\zmath{https://zbmath.org/?q=an:1175.41010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..171T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264628800008}
\elib{https://elibrary.ru/item.asp?id=20358669}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349113644}
Linking options:
  • https://www.mathnet.ru/eng/im2710
  • https://doi.org/10.1070/IM2009v073n01ABEH002442
  • https://www.mathnet.ru/eng/im/v73/i1/p177
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:517
    Russian version PDF:207
    English version PDF:22
    References:65
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024