Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 6, Pages 1187–1252
DOI: https://doi.org/10.1070/IM2008v072n06ABEH002433
(Mi im2702)
 

This article is cited in 5 scientific papers (total in 5 papers)

An adelic resolution for homology sheaves

S. O. Gorchinskiyab

a Steklov Mathematical Institute, Russian Academy of Sciences
b Independent University of Moscow
References:
Abstract: We propose a generalization of the ordinary idele group by constructing certain adelic complexes for sheaves of $K$-groups on schemes. Such complexes are defined for any abelian sheaf on a scheme. We focus on the case when the sheaf is associated with the presheaf of a homology theory with certain natural axioms satisfied, in particular, by $K$-theory. In this case it is proved that the adelic complex provides a flabby resolution for this sheaf on smooth varieties over an infinite perfect field and that the natural morphism to the Gersten complex is a quasi-isomorphism. The main advantage of the new adelic resolution is that it is contravariant and multiplicative. In particular, this enables us to reprove that the intersection in Chow groups coincides (up to a sign) with the natural product in the corresponding $K$-cohomology groups. Also, we show that the Weil pairing can be expressed as a Massey triple product in $K$-cohomology groups with certain indices.
Received: 04.07.2007
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2008, Volume 72, Issue 6, Pages 133–202
DOI: https://doi.org/10.4213/im2702
Bibliographic databases:
Document Type: Article
UDC: 512.73
Language: English
Original paper language: Russian
Citation: S. O. Gorchinskiy, “An adelic resolution for homology sheaves”, Izv. RAN. Ser. Mat., 72:6 (2008), 133–202; Izv. Math., 72:6 (2008), 1187–1252
Citation in format AMSBIB
\Bibitem{Gor08}
\by S.~O.~Gorchinskiy
\paper An adelic resolution for homology sheaves
\jour Izv. RAN. Ser. Mat.
\yr 2008
\vol 72
\issue 6
\pages 133--202
\mathnet{http://mi.mathnet.ru/im2702}
\crossref{https://doi.org/10.4213/im2702}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489487}
\zmath{https://zbmath.org/?q=an:1166.14005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008IzMat..72.1187G}
\elib{https://elibrary.ru/item.asp?id=12143208}
\transl
\jour Izv. Math.
\yr 2008
\vol 72
\issue 6
\pages 1187--1252
\crossref{https://doi.org/10.1070/IM2008v072n06ABEH002433}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262990700005}
\elib{https://elibrary.ru/item.asp?id=13576651}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349090628}
Linking options:
  • https://www.mathnet.ru/eng/im2702
  • https://doi.org/10.1070/IM2008v072n06ABEH002433
  • https://www.mathnet.ru/eng/im/v72/i6/p133
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:792
    Russian version PDF:390
    English version PDF:18
    References:63
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024