Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 6, Pages 1161–1186
DOI: https://doi.org/10.1070/IM2008v072n06ABEH002432
(Mi im2685)
 

This article is cited in 4 scientific papers (total in 5 papers)

Boundaries of braid groups and the Markov–Ivanovsky normal form

A. M. Vershik, A. V. Malyutin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: We describe random walk boundaries (in particular, the Poisson–Furstenberg, or PF-, boundary) for a large family of groups in terms of the hyperbolic boundary of a special normal free subgroup. We prove that almost all the trajectories of a random walk (with respect to an arbitrary non-degenerate measure on the group) converge to points of that boundary. This yields the stability (in the sense of [6]) of the so-called Markov–Ivanovsky normal form [12] for braids.
Received: 21.06.2007
Revised: 17.11.2007
Bibliographic databases:
UDC: 514.1, 519.216, 515.162.8, 514.15
Language: English
Original paper language: Russian
Citation: A. M. Vershik, A. V. Malyutin, “Boundaries of braid groups and the Markov–Ivanovsky normal form”, Izv. Math., 72:6 (2008), 1161–1186
Citation in format AMSBIB
\Bibitem{VerMal08}
\by A.~M.~Vershik, A.~V.~Malyutin
\paper Boundaries of braid groups and the Markov--Ivanovsky normal form
\jour Izv. Math.
\yr 2008
\vol 72
\issue 6
\pages 1161--1186
\mathnet{http://mi.mathnet.ru//eng/im2685}
\crossref{https://doi.org/10.1070/IM2008v072n06ABEH002432}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489486}
\zmath{https://zbmath.org/?q=an:1155.60033}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008IzMat..72.1161V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262990700004}
\elib{https://elibrary.ru/item.asp?id=12143207}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349091265}
Linking options:
  • https://www.mathnet.ru/eng/im2685
  • https://doi.org/10.1070/IM2008v072n06ABEH002432
  • https://www.mathnet.ru/eng/im/v72/i6/p105
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:887
    Russian version PDF:415
    English version PDF:23
    References:101
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024