Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 6, Pages 1089–1138
DOI: https://doi.org/10.1070/im1999v063n06ABEH000268
(Mi im268)
 

This article is cited in 5 scientific papers (total in 5 papers)

Some remarks on the $\ell$-adic regulator. III

L. V. Kuz'min

Russian Research Centre "Kurchatov Institute"
References:
Abstract: Let $K$ be a finite extension of the field of rational $\ell$-adic numbers $\mathbb Q_\ell$, and let $K_\infty$ be the cyclotomic $\mathbb Z_\ell$-extension of $K$. For an intermediate field $K_n$ in $K_\infty/K$, let $U(K_n)$ be the group of units of $K_n$ and put $U(K_n)^\perp=\{x\in K_n\mid\operatorname{Sp}_{K_n/\mathbb Q_\ell}(x\log u)\in {\mathbb Z}_\ell$ for all $u\in U(K_n)\}$, where $\log\colon U(K_n)\to K_n$ is the $\ell$-adic logarithm. We give an approximate characterization of $U(K_n)^\perp$. The proofs are based on the use of Laurent series with integer coefficients and infinite principal part.
Received: 13.01.1998
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1999, Volume 63, Issue 6, Pages 29–82
DOI: https://doi.org/10.4213/im268
Bibliographic databases:
MSC: 11S85, 11R23, 11R37
Language: English
Original paper language: Russian
Citation: L. V. Kuz'min, “Some remarks on the $\ell$-adic regulator. III”, Izv. RAN. Ser. Mat., 63:6 (1999), 29–82; Izv. Math., 63:6 (1999), 1089–1138
Citation in format AMSBIB
\Bibitem{Kuz99}
\by L.~V.~Kuz'min
\paper Some remarks on the $\ell$-adic regulator.~III
\jour Izv. RAN. Ser. Mat.
\yr 1999
\vol 63
\issue 6
\pages 29--82
\mathnet{http://mi.mathnet.ru/im268}
\crossref{https://doi.org/10.4213/im268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1748561}
\zmath{https://zbmath.org/?q=an:1001.11041}
\transl
\jour Izv. Math.
\yr 1999
\vol 63
\issue 6
\pages 1089--1138
\crossref{https://doi.org/10.1070/im1999v063n06ABEH000268}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000086908900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746738856}
Linking options:
  • https://www.mathnet.ru/eng/im268
  • https://doi.org/10.1070/im1999v063n06ABEH000268
  • https://www.mathnet.ru/eng/im/v63/i6/p29
    Cycle of papers
    This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:314
    Russian version PDF:176
    English version PDF:16
    References:39
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024