Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 3, Pages 627–653
DOI: https://doi.org/10.1070/IM2009v073n03ABEH002459
(Mi im2672)
 

The singularly perturbed Bessel equation in complex domains

A. S. Yudina
References:
Abstract: We use the method of regularization to construct two kinds of regularized asymptotic expansions (in a complex parameter) for a fundamental system of solutions of the Bessel equation. Expansions of the first kind are defined in the closed complex plane of the independent variable except for singular points of the spectral functions of the initial operator. We determine the domains of uniform and non-uniform convergence of the series involved. We study the resulting formulae on the positive real axis and prove that they yield Debye's familiar asymptotic expansions for Bessel functions on the interval (0,1), which lies in the domain of non-uniform convergence. The second kind of regularized uniform asymptotic expansions is constructed near a regular singular point in another domain of values of the parameter in the equations. Using these results, we get uniform asymptotic expansions of solutions of a boundary-value problem for the non-homogenous and homogeneous Bessel equations.
Keywords: Bessel equation, regularizing function, regularized asymptotic expansions, Debye's expansion, Stokes lines.
Received: 12.06.2007
Revised: 18.04.2008
Bibliographic databases:
UDC: 517.923
MSC: 34E15, 33C10, 34C05
Language: English
Original paper language: Russian
Citation: A. S. Yudina, “The singularly perturbed Bessel equation in complex domains”, Izv. Math., 73:3 (2009), 627–653
Citation in format AMSBIB
\Bibitem{Yud09}
\by A.~S.~Yudina
\paper The singularly perturbed Bessel equation in complex domains
\jour Izv. Math.
\yr 2009
\vol 73
\issue 3
\pages 627--653
\mathnet{http://mi.mathnet.ru//eng/im2672}
\crossref{https://doi.org/10.1070/IM2009v073n03ABEH002459}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553093}
\zmath{https://zbmath.org/?q=an:1182.34110}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..627Y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268622900007}
\elib{https://elibrary.ru/item.asp?id=20358685}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350627266}
Linking options:
  • https://www.mathnet.ru/eng/im2672
  • https://doi.org/10.1070/IM2009v073n03ABEH002459
  • https://www.mathnet.ru/eng/im/v73/i3/p199
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:512
    Russian version PDF:191
    English version PDF:8
    References:63
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024