Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 3, Pages 555–577
DOI: https://doi.org/10.1070/IM2009v073n03ABEH002456
(Mi im2671)
 

This article is cited in 6 scientific papers (total in 6 papers)

A sharp constant in a Sobolev–Nirenberg inequality and its application to the Schrödinger equation

Sh. M. Nasibov

Institute of Applied Mathematics, Baku State University
References:
Abstract: We prove that the solution of the Cauchy problem for a non-linear Schrödinger evolution equation with critical and supercritical exponents can blow up at a finite time for some initial data, and this time is estimated from above and below. To this end, an interpolation Nirenberg-type inequality and a Sobolev-type inequality are proved and the values of sharp constants in these inequalities are calculated.
Keywords: Nirenberg–Sobolev inequality, sharp constant, non-linear Schrödinger equation, blow-up, global solubility.
Received: 01.06.2007
Revised: 29.02.2008
Bibliographic databases:
UDC: 517.946.51.9
MSC: Primary 35J10; Secondary 35Q55, 46E35, 74H35
Language: English
Original paper language: Russian
Citation: Sh. M. Nasibov, “A sharp constant in a Sobolev–Nirenberg inequality and its application to the Schrödinger equation”, Izv. Math., 73:3 (2009), 555–577
Citation in format AMSBIB
\Bibitem{Nas09}
\by Sh.~M.~Nasibov
\paper A sharp constant in a Sobolev--Nirenberg inequality and its application to the Schr\"odinger equation
\jour Izv. Math.
\yr 2009
\vol 73
\issue 3
\pages 555--577
\mathnet{http://mi.mathnet.ru//eng/im2671}
\crossref{https://doi.org/10.1070/IM2009v073n03ABEH002456}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553090}
\zmath{https://zbmath.org/?q=an:1167.35044}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..555N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268622900004}
\elib{https://elibrary.ru/item.asp?id=20358682}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350633103}
Linking options:
  • https://www.mathnet.ru/eng/im2671
  • https://doi.org/10.1070/IM2009v073n03ABEH002456
  • https://www.mathnet.ru/eng/im/v73/i3/p127
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:671
    Russian version PDF:237
    English version PDF:35
    References:95
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024