Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 6, Pages 1139–1170
DOI: https://doi.org/10.1070/im1999v063n06ABEH000267
(Mi im267)
 

This article is cited in 44 scientific papers (total in 44 papers)

On Chisini's conjecture

Vik. S. Kulikov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Chisini's conjecture asserts that if $B\subset\mathbb P^2$ is a cuspidal curve, then a generic morphism $f$, $\deg f\geqslant 5$, of a smooth projective surface to $\mathbb P^2$ branched along $B$ is unique up to isomorphism. In this paper we prove that Chisini's conjecture is true for $B$ if $\deg f$ is greater than the value of some function depending on the degree, genus and the number of cusps of $B$. This inequality holds for almost all generic morphisms. In particular, on a surface with ample canonical class, it holds for generic morphisms defined by a linear subsystem of the $m$-canonical class, $m\in\mathbb N$.
Moreover, we present examples of pairs $B_{1,m},B_{2,m}\subset\mathbb P^2$ ($m\in\mathbb N$, $m\geqslant 5$) of plane cuspidal curves such that
(i) $\deg B_{1,m}=\deg B_{2,m}$, and these curves have homeomorphic tubular neighbourhoods in $\mathbb P^2$, but the pairs $(\mathbb P^2,B_{1,m})$ and $(\mathbb P^2,B_{2,m})$ are not homeomorphic;
(ii) $B_{i,m}$ is the discriminant curve of a generic morphism $f_{i,m}\colon S_i\to\mathbb P^2$, $i=1,2$, where $S_i$ are surfaces of general type;
(iii) the surfaces $S_1$ and $S_2$ are homeomorphic (as four-dimensional real manifolds);
(iv) the morphism $f_{i,m}$ is defined by a three-dimensional linear subsystem of the $m$-canonical class of $S_i$.
Received: 26.05.1998
Revised: 22.09.1998
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1999, Volume 63, Issue 6, Pages 83–116
DOI: https://doi.org/10.4213/im267
Bibliographic databases:
Document Type: Article
MSC: 14E20
Language: English
Original paper language: Russian
Citation: Vik. S. Kulikov, “On Chisini's conjecture”, Izv. RAN. Ser. Mat., 63:6 (1999), 83–116; Izv. Math., 63:6 (1999), 1139–1170
Citation in format AMSBIB
\Bibitem{Kul99}
\by Vik.~S.~Kulikov
\paper On Chisini's conjecture
\jour Izv. RAN. Ser. Mat.
\yr 1999
\vol 63
\issue 6
\pages 83--116
\mathnet{http://mi.mathnet.ru/im267}
\crossref{https://doi.org/10.4213/im267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1748562}
\zmath{https://zbmath.org/?q=an:0962.14005}
\elib{https://elibrary.ru/item.asp?id=13305812}
\transl
\jour Izv. Math.
\yr 1999
\vol 63
\issue 6
\pages 1139--1170
\crossref{https://doi.org/10.1070/im1999v063n06ABEH000267}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000086908900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0010564432}
Linking options:
  • https://www.mathnet.ru/eng/im267
  • https://doi.org/10.1070/im1999v063n06ABEH000267
  • https://www.mathnet.ru/eng/im/v63/i6/p83
    Cycle of papers
    This publication is cited in the following 44 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:564
    Russian version PDF:249
    English version PDF:21
    References:96
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024