Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 3, Pages 439–459
DOI: https://doi.org/10.1070/IM2010v074n03ABEH002493
(Mi im2669)
 

This article is cited in 3 scientific papers (total in 3 papers)

The eigenvalue function of a family of Sturm–Liouville operators

T. N. Harutyunyan

Yerevan State University
References:
Abstract: We define a function $\mu^-(\gamma)$ in such a way that its value at every point $\gamma\in(-\infty,\pi)$, $\gamma=\beta-\pi n$, $\beta\in[0,\pi)$, $n=0,1,2,\dots$, coincides with an eigenvalue $\mu_n(\alpha,\beta)$ of the Sturm–Liouville problem $-y''+q(x)y=\mu y$, $y(0)\cos\alpha+y'(0)\sin\alpha=0$, $y(\pi)\cos\beta+y'(\pi)\sin\beta=0$ (for some $\alpha\,{\in}\,(0,\pi]$). We find necessary and sufficient conditions for a function to have this property for a real $q\in L^1[0,\pi]$.
Keywords: Sturm–Liouville problem, eigenvalue function, inverse problem.
Received: 25.05.2007
Revised: 07.04.2008
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: T. N. Harutyunyan, “The eigenvalue function of a family of Sturm–Liouville operators”, Izv. Math., 74:3 (2010), 439–459
Citation in format AMSBIB
\Bibitem{Har10}
\by T.~N.~Harutyunyan
\paper The eigenvalue function of a family of Sturm--Liouville operators
\jour Izv. Math.
\yr 2010
\vol 74
\issue 3
\pages 439--459
\mathnet{http://mi.mathnet.ru//eng/im2669}
\crossref{https://doi.org/10.1070/IM2010v074n03ABEH002493}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2682369}
\zmath{https://zbmath.org/?q=an:1202.34148}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..439A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280306100001}
\elib{https://elibrary.ru/item.asp?id=20425206}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049332179}
Linking options:
  • https://www.mathnet.ru/eng/im2669
  • https://doi.org/10.1070/IM2010v074n03ABEH002493
  • https://www.mathnet.ru/eng/im/v74/i3/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:799
    Russian version PDF:250
    English version PDF:23
    References:236
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024