|
This article is cited in 3 scientific papers (total in 3 papers)
The eigenvalue function of a family of Sturm–Liouville operators
T. N. Harutyunyan Yerevan State University
Abstract:
We define a function $\mu^-(\gamma)$ in such a way that its value at every point
$\gamma\in(-\infty,\pi)$, $\gamma=\beta-\pi n$, $\beta\in[0,\pi)$, $n=0,1,2,\dots$,
coincides with an eigenvalue $\mu_n(\alpha,\beta)$ of the Sturm–Liouville
problem $-y''+q(x)y=\mu y$, $y(0)\cos\alpha+y'(0)\sin\alpha=0$,
$y(\pi)\cos\beta+y'(\pi)\sin\beta=0$ (for some $\alpha\,{\in}\,(0,\pi]$).
We find necessary and sufficient conditions for a function to have
this property for a real $q\in L^1[0,\pi]$.
Keywords:
Sturm–Liouville problem, eigenvalue function, inverse problem.
Received: 25.05.2007 Revised: 07.04.2008
Citation:
T. N. Harutyunyan, “The eigenvalue function of a family of Sturm–Liouville operators”, Izv. Math., 74:3 (2010), 439–459
Linking options:
https://www.mathnet.ru/eng/im2669https://doi.org/10.1070/IM2010v074n03ABEH002493 https://www.mathnet.ru/eng/im/v74/i3/p3
|
Statistics & downloads: |
Abstract page: | 799 | Russian version PDF: | 250 | English version PDF: | 23 | References: | 236 | First page: | 27 |
|