Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 6, Pages 1253–1272
DOI: https://doi.org/10.1070/IM2008v072n06ABEH002434
(Mi im2664)
 

This article is cited in 8 scientific papers (total in 8 papers)

Minimal Gromov–Witten rings

V. V. Przyjalkowski

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We construct an abstract theory of Gromov–Witten invariants of genus 0 for quantum minimal Fano varieties (a minimal class of varieties which is natural from the quantum cohomological viewpoint). Namely, we consider the minimal Gromov–Witten ring: a commutative algebra whose generators and relations are of the form used in the Gromov–Witten theory of Fano varieties (of unspecified dimension). The Gromov–Witten theory of any quantum minimal variety is a homomorphism from this ring to $\mathbb C$. We prove an abstract reconstruction theorem which says that this ring is isomorphic to the free commutative ring generated by ‘prime two-pointed invariants’. We also find solutions of the differential equation of type $DN$ for a Fano variety of dimension $N$ in terms of the generating series of one-pointed Gromov–Witten invariants.
Received: 14.05.2007
Bibliographic databases:
Document Type: Article
UDC: 512.772
MSC: 53D45, 14J45, 14N35
Language: English
Original paper language: Russian
Citation: V. V. Przyjalkowski, “Minimal Gromov–Witten rings”, Izv. Math., 72:6 (2008), 1253–1272
Citation in format AMSBIB
\Bibitem{Prz08}
\by V.~V.~Przyjalkowski
\paper Minimal Gromov--Witten rings
\jour Izv. Math.
\yr 2008
\vol 72
\issue 6
\pages 1253--1272
\mathnet{http://mi.mathnet.ru//eng/im2664}
\crossref{https://doi.org/10.1070/IM2008v072n06ABEH002434}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489488}
\zmath{https://zbmath.org/?q=an:1158.53070}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008IzMat..72.1253P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262990700006}
\elib{https://elibrary.ru/item.asp?id=12143209}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349120566}
Linking options:
  • https://www.mathnet.ru/eng/im2664
  • https://doi.org/10.1070/IM2008v072n06ABEH002434
  • https://www.mathnet.ru/eng/im/v72/i6/p203
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:579
    Russian version PDF:197
    English version PDF:17
    References:55
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024