Abstract:
We study the absolute basis problem in algebras of holomorphic functions
in non-commuting variables generating a finite-dimensional nilpotent Lie
algebra g. This is motivated by J. L. Taylor's programme
of non-commutative holomorphic functional calculus in the Lie algebra
framework.
Keywords:
holomorphic functions in elements of a Lie algebra, Arens–Michael envelope, localization.
Citation:
A. A. Dosi, “Non-commutative holomorphic functions in elements of a Lie algebra and the absolute basis problem”, Izv. Math., 73:6 (2009), 1149–1171
A. Yu. Pirkovskii, “Noncommutative analogues of Stein spaces of finite embedding dimension”, Algebraic Methods in Functional Analysis, the Victor Shulman Anniversary Volume, Operator Theory Advances and Applications, 233, eds. Todorov I., Turowska L., 2014, 135–153
A. A. Dosi, “The Taylor spectrum and transversality for a Heisenberg algebra of operators”, Sb. Math., 201:3 (2010), 355–375
Dosi A., “Taylor functional calculus for supernilpotent Lie algebra of operators”, J. Operator Theory, 63:1 (2010), 191–216
Anar Dosiev, “Local left invertibility for operator tuples and noncommutative localizations”, J K-Theor, 4:1 (2009), 163