Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 6, Pages 1063–1087
DOI: https://doi.org/10.1070/im1999v063n06ABEH000266
(Mi im266)
 

This article is cited in 3 scientific papers (total in 3 papers)

Non-Archimedean analogues of orthogonal and symmetric operators

S. A. Albeverioa, J. M. Bayod, C. Perez-Garsia, A. Yu. Khrennikov, R. Cianci

a Ruhr-Universität Bochum, Mathematischer Institut
References:
Abstract: We study orthogonal and symmetric operators on non-Archimedean Hilbert spaces in connection with the $p$-adic quantization. This quantization describes measurements with finite precision. Symmetric (bounded) operators on $p$-adic Hilbert spaces represent physical observables. We study the spectral properties of one of the most important quantum operators, namely, the position operator (which is represented on $p$-adic Hilbert $L_2$-space with respect to the $p$-adic Gaussian measure). Orthogonal isometric isomorphisms of $p$-adic Hilbert spaces preserve the precision of measurements. We study properties of orthogonal operators. It is proved that every orthogonal operator on non-Archimedean Hilbert space is continuous. However, there are discontinuous operators with dense domain of definition that preserve the inner product. There exist non-isometric orthogonal operators. We describe some classes of orthogonal isometric operators on finite-dimensional spaces. We study some general questions in the theory of non-Archimedean Hilbert spaces (in particular, general connections between the topology, norm and inner product).
Received: 28.10.1997
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1999, Volume 63, Issue 6, Pages 3–28
DOI: https://doi.org/10.4213/im266
Bibliographic databases:
MSC: 46S10
Language: English
Original paper language: Russian
Citation: S. A. Albeverio, J. M. Bayod, C. Perez-Garsia, A. Yu. Khrennikov, R. Cianci, “Non-Archimedean analogues of orthogonal and symmetric operators”, Izv. RAN. Ser. Mat., 63:6 (1999), 3–28; Izv. Math., 63:6 (1999), 1063–1087
Citation in format AMSBIB
\Bibitem{AlbBayPer99}
\by S.~A.~Albeverio, J.~M.~Bayod, C.~Perez-Garsia, A.~Yu.~Khrennikov, R.~Cianci
\paper Non-Archimedean analogues of orthogonal and symmetric operators
\jour Izv. RAN. Ser. Mat.
\yr 1999
\vol 63
\issue 6
\pages 3--28
\mathnet{http://mi.mathnet.ru/im266}
\crossref{https://doi.org/10.4213/im266}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1748560}
\zmath{https://zbmath.org/?q=an:0974.47054}
\transl
\jour Izv. Math.
\yr 1999
\vol 63
\issue 6
\pages 1063--1087
\crossref{https://doi.org/10.1070/im1999v063n06ABEH000266}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000086908900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746663566}
Linking options:
  • https://www.mathnet.ru/eng/im266
  • https://doi.org/10.1070/im1999v063n06ABEH000266
  • https://www.mathnet.ru/eng/im/v63/i6/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:595
    Russian version PDF:216
    English version PDF:11
    References:76
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024