Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 5, Pages 1033–1075
DOI: https://doi.org/10.1070/IM2009v073n05ABEH002472
(Mi im2657)
 

This article is cited in 6 scientific papers (total in 6 papers)

On a two-dimensional analogue of Szemerédi's theorem in Abelian groups

I. D. Shkredov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Let $G$ be a finite Abelian group and $A\subseteq G\times G$ a set of cardinality at least $|G|^2/(\log\log|G|)^c$, where $c>0$ is an absolute constant. We prove that $A$ contains a triple $\{(k,m),(k+d,m),(k,m+d)\}$ with $d\neq0$. This is a two-dimensional generalization of Szemerédi's theorem on arithmetic progressions.
Keywords: two-dimensional generalizations of Szemerédi's theorem, problems on arithmetic progressions, Roth's theorem, Bohr sets.
Received: 03.05.2007
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2009, Volume 73, Issue 5, Pages 181–224
DOI: https://doi.org/10.4213/im2657
Bibliographic databases:
UDC: 511.34+511.218+511.336
MSC: 35J25, 37A15
Language: English
Original paper language: Russian
Citation: I. D. Shkredov, “On a two-dimensional analogue of Szemerédi's theorem in Abelian groups”, Izv. RAN. Ser. Mat., 73:5 (2009), 181–224; Izv. Math., 73:5 (2009), 1033–1075
Citation in format AMSBIB
\Bibitem{Shk09}
\by I.~D.~Shkredov
\paper On a~two-dimensional analogue of Szemer\'edi's theorem in Abelian groups
\jour Izv. RAN. Ser. Mat.
\yr 2009
\vol 73
\issue 5
\pages 181--224
\mathnet{http://mi.mathnet.ru/im2657}
\crossref{https://doi.org/10.4213/im2657}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584232}
\zmath{https://zbmath.org/?q=an:05637865}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73.1033S}
\elib{https://elibrary.ru/item.asp?id=20358698}
\transl
\jour Izv. Math.
\yr 2009
\vol 73
\issue 5
\pages 1033--1075
\crossref{https://doi.org/10.1070/IM2009v073n05ABEH002472}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272485400007}
\elib{https://elibrary.ru/item.asp?id=15446925}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71449108435}
Linking options:
  • https://www.mathnet.ru/eng/im2657
  • https://doi.org/10.1070/IM2009v073n05ABEH002472
  • https://www.mathnet.ru/eng/im/v73/i5/p181
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:695
    Russian version PDF:199
    English version PDF:8
    References:49
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024