Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 4, Pages 797–859
DOI: https://doi.org/10.1070/IM2009v073n04ABEH002465
(Mi im2638)
 

This article is cited in 21 scientific papers (total in 21 papers)

Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups

V. V. Shevchishin

University of Bonn, Mathematical Institute
References:
Abstract: In this paper we prove the non-existence of Lagrangian embeddings of the Klein bottle $K$ in $\mathbb{R}^4$ and $\mathbb{C}\mathbb{P}^2$. We exploit the existence of a special embedding of $K$ in a symplectic Lefschetz pencil $\operatorname{pr}\colon X \to S^2$ and study its monodromy. As the main technical tool, we develop the combinatorial theory of mapping class groups. The results obtained enable us to show that in the case when the class $[K]\in\mathsf{H}_2(X,\mathbb{Z}_2)$ is trivial, the monodromy of $\operatorname{pr}\colon X\to S^2$ must be of a special form. Finally, we show that such a monodromy cannot be realized in $\mathbb{C}\mathbb{P}^2$.
Keywords: symplectic geometry, Lagrangian submanifold, Lefschetz pencil, monodromy, mapping class group, Coxeter system, Artin–Brieskorn group.
Received: 26.03.2007
Bibliographic databases:
UDC: 513.8+515.1
Language: English
Original paper language: Russian
Citation: V. V. Shevchishin, “Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups”, Izv. Math., 73:4 (2009), 797–859
Citation in format AMSBIB
\Bibitem{She09}
\by V.~V.~Shevchishin
\paper Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups
\jour Izv. Math.
\yr 2009
\vol 73
\issue 4
\pages 797--859
\mathnet{http://mi.mathnet.ru//eng/im2638}
\crossref{https://doi.org/10.1070/IM2009v073n04ABEH002465}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583968}
\zmath{https://zbmath.org/?q=an:1196.57021}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..797S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271211200006}
\elib{https://elibrary.ru/item.asp?id=20358691}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-72849128962}
Linking options:
  • https://www.mathnet.ru/eng/im2638
  • https://doi.org/10.1070/IM2009v073n04ABEH002465
  • https://www.mathnet.ru/eng/im/v73/i4/p153
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024