Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 5, Pages 861–892
DOI: https://doi.org/10.1070/IM2009v073n05ABEH002466
(Mi im2633)
 

This article is cited in 21 scientific papers (total in 21 papers)

On subgroups of free Burnside groups of odd exponent $n\geqslant 1003$

V. S. Atabekian

Yerevan State University
References:
Abstract: We prove that for any odd number $n\geqslant 1003$, every non-cyclic subgroup of the 2-generator free Burnside group of exponent $n$ contains a subgroup isomorphic to the free Burnside group of exponent $n$ and infinite rank. Various families of relatively free $n$-periodic subgroups are constructed in free periodic groups of odd exponent $n\ge 665$. For the same groups, we describe a monomorphism $\tau$ such that a word $A$ is an elementary period of rank $\alpha$ if and only if its image $\tau(A)$ is an elementary period of rank $\alpha+1$.
Keywords: free Burnside group, variety of periodic groups, group with cyclic subgroups, periodic word, reduced word.
Received: 12.03.2007
Bibliographic databases:
UDC: 512.543+512.544
MSC: 20F50, 20F05
Language: English
Original paper language: Russian
Citation: V. S. Atabekian, “On subgroups of free Burnside groups of odd exponent $n\geqslant 1003$”, Izv. Math., 73:5 (2009), 861–892
Citation in format AMSBIB
\Bibitem{Ata09}
\by V.~S.~Atabekian
\paper On subgroups of free Burnside groups of odd exponent $n\geqslant 1003$
\jour Izv. Math.
\yr 2009
\vol 73
\issue 5
\pages 861--892
\mathnet{http://mi.mathnet.ru//eng/im2633}
\crossref{https://doi.org/10.1070/IM2009v073n05ABEH002466}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584226}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..861A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272485400001}
\elib{https://elibrary.ru/item.asp?id=20358692}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71449109831}
Linking options:
  • https://www.mathnet.ru/eng/im2633
  • https://doi.org/10.1070/IM2009v073n05ABEH002466
  • https://www.mathnet.ru/eng/im/v73/i5/p3
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:989
    Russian version PDF:130
    English version PDF:22
    References:147
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024