Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 5, Pages 995–1014
DOI: https://doi.org/10.1070/im1999v063n05ABEH000263
(Mi im263)
 

This article is cited in 7 scientific papers (total in 7 papers)

Almost-representations and asymptotic representations of discrete groups

V. M. Manuilov

M. V. Lomonosov Moscow State University
References:
Abstract: We define a new property of finitely presented groups connected with their asymptotic representations. Namely, we say that a group is AGA if each of its almost-representations generates an asymptotic representation. We give examples of groups with and without this property. In particular, free groups, finite groups and free Abelian groups are AGA. In our example of a group $\Gamma$ that is not AGA, the group $K^0(\mathrm B\Gamma)$ contains elements that are not covered by asymptotic representations of $\Gamma$.
Received: 28.05.1998
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1999, Volume 63, Issue 5, Pages 159–178
DOI: https://doi.org/10.4213/im263
Bibliographic databases:
MSC: 22D25
Language: English
Original paper language: Russian
Citation: V. M. Manuilov, “Almost-representations and asymptotic representations of discrete groups”, Izv. RAN. Ser. Mat., 63:5 (1999), 159–178; Izv. Math., 63:5 (1999), 995–1014
Citation in format AMSBIB
\Bibitem{Man99}
\by V.~M.~Manuilov
\paper Almost-representations and asymptotic representations of discrete groups
\jour Izv. RAN. Ser. Mat.
\yr 1999
\vol 63
\issue 5
\pages 159--178
\mathnet{http://mi.mathnet.ru/im263}
\crossref{https://doi.org/10.4213/im263}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1727611}
\zmath{https://zbmath.org/?q=an:0961.22008}
\transl
\jour Izv. Math.
\yr 1999
\vol 63
\issue 5
\pages 995--1014
\crossref{https://doi.org/10.1070/im1999v063n05ABEH000263}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085381600006}
Linking options:
  • https://www.mathnet.ru/eng/im263
  • https://doi.org/10.1070/im1999v063n05ABEH000263
  • https://www.mathnet.ru/eng/im/v63/i5/p159
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:346
    Russian version PDF:194
    English version PDF:16
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024