Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 1, Pages 181–213
DOI: https://doi.org/10.1070/IM2009v073n01ABEH002443
(Mi im2628)
 

This article is cited in 6 scientific papers (total in 6 papers)

Isometric immersions of a cone and a cylinder

M. I. Shtogrin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We thoroughly analyse the method used by Pogorelov to construct piecewise-smooth tubular surfaces in $\mathbb R^3$ isometric to the surface of a right circular cylinder. The properties of the inverse images of edges of any tubular surface on its planar unfolding are investigated in detail. We find conditions on plane curves lying on the unfolding that enable them to be the inverse images of edges of some tubular surface. We make a refinement concerning the number of smooth pieces that form a piecewise-smooth tubular surface. We generalize Pogorelov's method from the surface of a right circular cylinder to that of a right circular cone.
Keywords: surface theory, surfaces in three-dimensional space.
Received: 26.02.2007
Bibliographic databases:
Document Type: Article
UDC: 514.752.437
MSC: 53A05, 53C45, 74K25
Language: English
Original paper language: Russian
Citation: M. I. Shtogrin, “Isometric immersions of a cone and a cylinder”, Izv. Math., 73:1 (2009), 181–213
Citation in format AMSBIB
\Bibitem{Sht09}
\by M.~I.~Shtogrin
\paper Isometric immersions of a cone and a cylinder
\jour Izv. Math.
\yr 2009
\vol 73
\issue 1
\pages 181--213
\mathnet{http://mi.mathnet.ru//eng/im2628}
\crossref{https://doi.org/10.1070/IM2009v073n01ABEH002443}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2503126}
\zmath{https://zbmath.org/?q=an:1166.53004}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..181S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264628800009}
\elib{https://elibrary.ru/item.asp?id=20358670}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59849092761}
Linking options:
  • https://www.mathnet.ru/eng/im2628
  • https://doi.org/10.1070/IM2009v073n01ABEH002443
  • https://www.mathnet.ru/eng/im/v73/i1/p187
  • Related presentations:
    This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:2014
    Russian version PDF:397
    English version PDF:19
    References:106
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024