Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 5, Pages 963–981
DOI: https://doi.org/10.1070/im1999v063n05ABEH000261
(Mi im261)
 

This article is cited in 5 scientific papers (total in 5 papers)

Killing $f$-manifolds of constant type

V. F. Kirichenkoa, L. V. Lipagina

a Moscow State Pedagogical University
References:
Abstract: The notion of constancy of type was introduced by Gray in the study of specific properties of the geometry of six-dimensional nearly Kahlerian manifolds, and has been investigated by many authors. This notion can be generalized in a natural manner to the case of metric $f$-manifolds with the Killing fundamental form (Killing $f$-manifolds). In this paper, the property of constancy of type is studied in the naturally arising class of so-called commutatively Killing $f$-manifolds, and some of their remarkable properties are investigated. An exhaustive description of commutatively Killing $f$-manifolds of constant type is obtained. In particular, it is proved that the constancy of type of commutatively Killing $f$-manifolds is tantamount to their local equivalence to the five-dimensional sphere $S^5$ endowed with the weakly cosymplectic structure induced by a special embedding of $S^5$ in the Cayley numbers.
Received: 05.05.1998
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1999, Volume 63, Issue 5, Pages 127–146
DOI: https://doi.org/10.4213/im261
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: V. F. Kirichenko, L. V. Lipagina, “Killing $f$-manifolds of constant type”, Izv. RAN. Ser. Mat., 63:5 (1999), 127–146; Izv. Math., 63:5 (1999), 963–981
Citation in format AMSBIB
\Bibitem{KirLip99}
\by V.~F.~Kirichenko, L.~V.~Lipagina
\paper Killing $f$-manifolds of constant type
\jour Izv. RAN. Ser. Mat.
\yr 1999
\vol 63
\issue 5
\pages 127--146
\mathnet{http://mi.mathnet.ru/im261}
\crossref{https://doi.org/10.4213/im261}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1727592}
\zmath{https://zbmath.org/?q=an:0978.53125}
\transl
\jour Izv. Math.
\yr 1999
\vol 63
\issue 5
\pages 963--981
\crossref{https://doi.org/10.1070/im1999v063n05ABEH000261}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085381600004}
Linking options:
  • https://www.mathnet.ru/eng/im261
  • https://doi.org/10.1070/im1999v063n05ABEH000261
  • https://www.mathnet.ru/eng/im/v63/i5/p127
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:380
    Russian version PDF:202
    English version PDF:12
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024