Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1967, Volume 1, Issue 2, Pages 349–380
DOI: https://doi.org/10.1070/IM1967v001n02ABEH000562
(Mi im2544)
 

This article is cited in 13 scientific papers (total in 13 papers)

Elementary spherical functions on the group $SL(2,P)$ over a field $P$, which is not locally compact, with respect to the subgroup of matrices with integral elements

R. S. Ismagilov
References:
Abstract: It is proved that in the space $H$ of an irreducible unitary (in the $\Pi_1$-metric) representation $T(g)$ of the group $G=SL(2,P)$ over a normed field $P$ that is not locally compact there exists a vector $y_0$ satisfying the condition $T(g)y_0=y_0$, where $g$ runs over the subgroup $G_0$ of matrices $g\in G$ with integral elements. The function $(T(g)y_0,y_0)$ is calculated; also investigated are the unitary representations of $G$ containing the identity representation $G_0$.
Received: 24.06.1966
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1967, Volume 31, Issue 2, Pages 361–390
Bibliographic databases:
UDC: 513.88
Language: English
Original paper language: Russian
Citation: R. S. Ismagilov, “Elementary spherical functions on the group $SL(2,P)$ over a field $P$, which is not locally compact, with respect to the subgroup of matrices with integral elements”, Izv. Akad. Nauk SSSR Ser. Mat., 31:2 (1967), 361–390; Math. USSR-Izv., 1:2 (1967), 349–380
Citation in format AMSBIB
\Bibitem{Ism67}
\by R.~S.~Ismagilov
\paper Elementary spherical functions on the group $SL(2,P)$ over a field~$P$, which is not locally compact, with respect to the subgroup of matrices with integral elements
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1967
\vol 31
\issue 2
\pages 361--390
\mathnet{http://mi.mathnet.ru/im2544}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=214828}
\zmath{https://zbmath.org/?q=an:0192.48403}
\transl
\jour Math. USSR-Izv.
\yr 1967
\vol 1
\issue 2
\pages 349--380
\crossref{https://doi.org/10.1070/IM1967v001n02ABEH000562}
Linking options:
  • https://www.mathnet.ru/eng/im2544
  • https://doi.org/10.1070/IM1967v001n02ABEH000562
  • https://www.mathnet.ru/eng/im/v31/i2/p361
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:397
    Russian version PDF:88
    English version PDF:10
    References:58
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024