Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1968, Volume 2, Issue 4, Pages 745–779
DOI: https://doi.org/10.1070/IM1968v002n04ABEH000663
(Mi im2492)
 

On the successive derivatives of functions in a quasianalytic class

G. V. Badalyan
References:
Abstract: In this paper we investigate the question of the signs in the sequence $\{(-1)^n\varphi_n(u)\}$, where $\varphi_0(u)=\varphi(u)$, $\varphi_1(u)=\varphi'(u)$, $\dots$,
$$ \varphi_{k+1}(u)=\varphi{k+1}(u)_\gamma=\biggl(\frac{\varphi_k(u)}{u^{\gamma_k-\gamma_{k-1}-1}}\biggr)', \quad k=1,2,\dots, $$
$0=\gamma_0<\gamma_1\leqslant\gamma_2\leqslant\dots\leqslant\gamma_n\leqslant\dots\to\infty$, when the real function $\varphi(t)$ belongs to a certain quasianalytic class in the sense of Carleman (according to the classification suggested by the author). A particular corollary of the result given in the paper is the correctness of Borel's hypothesis that there cannot exist a quasianalytic function $f(x)$ all of whose derivatives are positive at a given point in the domain of quasianalyticity of the function, except when the function is analytic.
Received: 10.02.1967
Bibliographic databases:
UDC: 517.5
MSC: 40A05, 40A30, 40G10
Language: English
Original paper language: Russian
Citation: G. V. Badalyan, “On the successive derivatives of functions in a quasianalytic class”, Math. USSR-Izv., 2:4 (1968), 745–779
Citation in format AMSBIB
\Bibitem{Bad68}
\by G.~V.~Badalyan
\paper On the successive derivatives of functions in a quasianalytic class
\jour Math. USSR-Izv.
\yr 1968
\vol 2
\issue 4
\pages 745--779
\mathnet{http://mi.mathnet.ru//eng/im2492}
\crossref{https://doi.org/10.1070/IM1968v002n04ABEH000663}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=235085}
\zmath{https://zbmath.org/?q=an:0164.06502|0182.38303}
Linking options:
  • https://www.mathnet.ru/eng/im2492
  • https://doi.org/10.1070/IM1968v002n04ABEH000663
  • https://www.mathnet.ru/eng/im/v32/i4/p788
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024