Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 4, Pages 631–647
DOI: https://doi.org/10.1070/im1999v063n04ABEH000249
(Mi im249)
 

Differentiable operators of nearly best approximation

P. V. Al'brecht

Moscow Aviation Institute
References:
Abstract: Let $X$ be a normed linear space, let $Y\subset X$ be a finite-dimensional subspace, and let $\varepsilon>0$. We define a multiplicative $\varepsilon$-selection $M\colon X\to Y$ to be a map such that
$$ \forall\,x\in X \qquad \|Mx-x\|\leqslant \inf\{\|x-y\|\colon y\in Y\}(1+\varepsilon). $$

We prove that there is an $\varepsilon$-selection $M$ whose smoothness coincides with that of the norm in $X$. We show that, generally speaking, it is impossible to find an $\varepsilon$-selection of greater smoothness in $L^p[0,1]$.
Received: 09.01.1998
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: P. V. Al'brecht, “Differentiable operators of nearly best approximation”, Izv. Math., 63:4 (1999), 631–647
Citation in format AMSBIB
\Bibitem{Alb99}
\by P.~V.~Al'brecht
\paper Differentiable operators of nearly best approximation
\jour Izv. Math.
\yr 1999
\vol 63
\issue 4
\pages 631--647
\mathnet{http://mi.mathnet.ru//eng/im249}
\crossref{https://doi.org/10.1070/im1999v063n04ABEH000249}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1717676}
\zmath{https://zbmath.org/?q=an:0988.41015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000084502900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746850263}
Linking options:
  • https://www.mathnet.ru/eng/im249
  • https://doi.org/10.1070/im1999v063n04ABEH000249
  • https://www.mathnet.ru/eng/im/v63/i4/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024