Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 2, Pages 241–264
DOI: https://doi.org/10.1070/IM2008v072n02ABEH002399
(Mi im2486)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the group of substitutions of formal power series with integer coefficients

I. K. Babenkoa, S. A. Bogatyib

a Universite Montpellier II
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study certain properties of the group $\mathcal J(\mathbb Z)$ of substitutions of formal power series in one variable with integer coefficients. We show that $\mathcal J(\mathbb Z)$, regarded as a topological group, has four generators and cannot be generated by fewer elements. In particular, we show that the one-dimensional continuous homology of $\mathcal J(\mathbb Z)$ is isomorphic to $\mathbb Z\oplus\mathbb Z\oplus\mathbb Z_2\oplus\mathbb Z_2$. We study various topological and geometric properties of the coset space $\mathcal J(\mathbb R)/\mathcal J(\mathbb Z)$. We compute the real cohomology $\widetilde{H}^*\bigl(\mathcal J(\mathbb Z); \mathbb R\bigr)$ with uniformly locally constant supports and show that it is naturally isomorphic to the cohomology of the nilpotent part of the Lie algebra of formal vector fields on the line.
Received: 24.11.2006
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2008, Volume 72, Issue 2, Pages 39–64
DOI: https://doi.org/10.4213/im2486
Bibliographic databases:
UDC: 512.546.12+515.145.23
Language: English
Original paper language: Russian
Citation: I. K. Babenko, S. A. Bogatyi, “On the group of substitutions of formal power series with integer coefficients”, Izv. RAN. Ser. Mat., 72:2 (2008), 39–64; Izv. Math., 72:2 (2008), 241–264
Citation in format AMSBIB
\Bibitem{BabBog08}
\by I.~K.~Babenko, S.~A.~Bogatyi
\paper On the group of substitutions of formal power series with integer coefficients
\jour Izv. RAN. Ser. Mat.
\yr 2008
\vol 72
\issue 2
\pages 39--64
\mathnet{http://mi.mathnet.ru/im2486}
\crossref{https://doi.org/10.4213/im2486}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2413648}
\zmath{https://zbmath.org/?q=an:1152.20026}
\elib{https://elibrary.ru/item.asp?id=11570593}
\transl
\jour Izv. Math.
\yr 2008
\vol 72
\issue 2
\pages 241--264
\crossref{https://doi.org/10.1070/IM2008v072n02ABEH002399}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000256185100002}
\elib{https://elibrary.ru/item.asp?id=13571626}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44249091405}
Linking options:
  • https://www.mathnet.ru/eng/im2486
  • https://doi.org/10.1070/IM2008v072n02ABEH002399
  • https://www.mathnet.ru/eng/im/v72/i2/p39
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:833
    Russian version PDF:300
    English version PDF:28
    References:98
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024