Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 3, Pages 549–560
DOI: https://doi.org/10.1070/im1999v063n03ABEH000245
(Mi im245)
 

This article is cited in 2 scientific papers (total in 2 papers)

On asymptotic values of entire functions

I. I. Marchenko

V. N. Karazin Kharkiv National University
References:
Abstract: In the theory of functions, an asymptotic spot of a function $f$ is defined to be a pair $\{a,\Gamma\}$, where $a\in\overline{\mathbb C}$ and $\Gamma$ is a continuous curve such that $f(z)\to a$ ($z\to\infty$, $z\in\Gamma$). In this paper we introduce a new notion of a strong asymptotic spot. Using this notion, we extend some results of Ahlfors (concerning asymptotic spots of entire functions of finite order) to functions of infinite order. We obtain exact estimates for the number of different strong asymptotic spots $\{\infty,\Gamma_j\}$ of entire functions of finite or infinite lower order.
Received: 12.03.1997
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1999, Volume 63, Issue 3, Pages 133–146
DOI: https://doi.org/10.4213/im245
Bibliographic databases:
MSC: 30D20
Language: English
Original paper language: Russian
Citation: I. I. Marchenko, “On asymptotic values of entire functions”, Izv. RAN. Ser. Mat., 63:3 (1999), 133–146; Izv. Math., 63:3 (1999), 549–560
Citation in format AMSBIB
\Bibitem{Mar99}
\by I.~I.~Marchenko
\paper On asymptotic values of entire functions
\jour Izv. RAN. Ser. Mat.
\yr 1999
\vol 63
\issue 3
\pages 133--146
\mathnet{http://mi.mathnet.ru/im245}
\crossref{https://doi.org/10.4213/im245}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1712120}
\zmath{https://zbmath.org/?q=an:1061.30500}
\transl
\jour Izv. Math.
\yr 1999
\vol 63
\issue 3
\pages 549--560
\crossref{https://doi.org/10.1070/im1999v063n03ABEH000245}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083431000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747011122}
Linking options:
  • https://www.mathnet.ru/eng/im245
  • https://doi.org/10.1070/im1999v063n03ABEH000245
  • https://www.mathnet.ru/eng/im/v63/i3/p133
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:321
    Russian version PDF:173
    English version PDF:18
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024