Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1970, Volume 4, Issue 2, Pages 371–380
DOI: https://doi.org/10.1070/IM1970v004n02ABEH000910
(Mi im2420)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$

V. E. Voskresenskii
References:
Abstract: The subfield $L$ of the field $K=\mathbf Q(x_1,\dots,x_n)$ consisting of invariant functions relative to a cyclic permutation of the indeterminates is interpreted as the field of rational functions on a certain torus defined over $\mathbf Q$. On this basis, a necessary condition is derived for pure transcendence of $L$ over $\mathbf Q$ from which are obtained a number of counterexamples. A list is also given of fields $L$ which are purely transcendental over $\mathbf Q$.
Received: 01.09.1969
Bibliographic databases:
UDC: 513.6
Language: English
Original paper language: Russian
Citation: V. E. Voskresenskii, “On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$”, Math. USSR-Izv., 4:2 (1970), 371–380
Citation in format AMSBIB
\Bibitem{Vos70}
\by V.~E.~Voskresenskii
\paper On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$
\jour Math. USSR-Izv.
\yr 1970
\vol 4
\issue 2
\pages 371--380
\mathnet{http://mi.mathnet.ru//eng/im2420}
\crossref{https://doi.org/10.1070/IM1970v004n02ABEH000910}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=274427}
\zmath{https://zbmath.org/?q=an:0216.32402}
Linking options:
  • https://www.mathnet.ru/eng/im2420
  • https://doi.org/10.1070/IM1970v004n02ABEH000910
  • https://www.mathnet.ru/eng/im/v34/i2/p366
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:344
    Russian version PDF:110
    English version PDF:19
    References:42
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024