Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 2, Pages 401–422
DOI: https://doi.org/10.1070/im1999v063n02ABEH000239
(Mi im239)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the Phragmen–Lindelof principle for subharmonic functions

D. S. Telyakovskii

Moscow Engineering Physics Institute (State University)
References:
Abstract: We consider subharmonic functions $f(z)$ in a domain $D\subset\mathbb C$ such that $f(z)$ does not exceed some constant $C$ at all points of $\partial D\setminus\zeta$, $\zeta\in\partial D$. Theorems of Phragmen–Lindelof type provide an upper bound (depending on the structure of the domain $D$) for the a priori possible growth of $f(z)$ as $z\to\zeta$ such that functions satisfying this estimate do not exceed $C$ in the whole domain $D$. We obtain a Phragmen–Lindelof type theorem in which the restriction on the possible growth of $f(z)$ as $z\to\zeta$ is expressed in terms of the lower density (with respect to plane Lebesgue measure) of the set $\mathbb C\setminus D$ at the point $\zeta$.
Received: 15.08.1995
Bibliographic databases:
MSC: 30C80
Language: English
Original paper language: Russian
Citation: D. S. Telyakovskii, “On the Phragmen–Lindelof principle for subharmonic functions”, Izv. Math., 63:2 (1999), 401–422
Citation in format AMSBIB
\Bibitem{Tel99}
\by D.~S.~Telyakovskii
\paper On the Phragmen--Lindelof principle for subharmonic functions
\jour Izv. Math.
\yr 1999
\vol 63
\issue 2
\pages 401--422
\mathnet{http://mi.mathnet.ru//eng/im239}
\crossref{https://doi.org/10.1070/im1999v063n02ABEH000239}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1701824}
\zmath{https://zbmath.org/?q=an:0934.30019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000082449800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746691301}
Linking options:
  • https://www.mathnet.ru/eng/im239
  • https://doi.org/10.1070/im1999v063n02ABEH000239
  • https://www.mathnet.ru/eng/im/v63/i2/p201
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:315
    Russian version PDF:200
    English version PDF:11
    References:48
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024