Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 2, Pages 245–254
DOI: https://doi.org/10.1070/im1999v063n02ABEH000234
(Mi im234)
 

On a problem of M. A. Lavrent'ev concerning the representability of functions by series of polynomials in the complex domain

A. A. Danielyan

Moscow Aviation Institute
References:
Abstract: M. A. Lavrent'ev has constructed an example of a compact set $E$ in $\mathbb C$ that is the boundary of a domain containing $\infty$ and such that every portion of $E$ separates the plane. Let $\{D_{n_k}\}$ and $\{D_{m_k}\}$ be two subsequences of bounded domains in the complement to $E$ such that every neighbourhood of every point of $E$ contains domains of both subsequences. Let functions $f_1(z)$ and $f_2(z)$ be defined in a disc $U$ that contains $E$. Suppose that they are regular outside $E$, coincide on all Domains $\{D_{m_k}\}$ and are limits everywhere in $U$ of pointwise convergent sequences of polynomials. Are there always domains in $\{D_{m_k}\}$ on which $f_1$ and $f_2$ coincide identically? In this paper we give a negative answer to this question of Lavrent'ev.
Received: 02.12.1996
Bibliographic databases:
MSC: 30E10
Language: English
Original paper language: Russian
Citation: A. A. Danielyan, “On a problem of M. A. Lavrent'ev concerning the representability of functions by series of polynomials in the complex domain”, Izv. Math., 63:2 (1999), 245–254
Citation in format AMSBIB
\Bibitem{Dan99}
\by A.~A.~Danielyan
\paper On a~problem of M.\,A.~Lavrent'ev concerning the representability of functions by series of polynomials in the complex domain
\jour Izv. Math.
\yr 1999
\vol 63
\issue 2
\pages 245--254
\mathnet{http://mi.mathnet.ru//eng/im234}
\crossref{https://doi.org/10.1070/im1999v063n02ABEH000234}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1701820}
\zmath{https://zbmath.org/?q=an:0945.30030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000082449800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746762967}
Linking options:
  • https://www.mathnet.ru/eng/im234
  • https://doi.org/10.1070/im1999v063n02ABEH000234
  • https://www.mathnet.ru/eng/im/v63/i2/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:405
    Russian version PDF:192
    English version PDF:12
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024