Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 1, Pages 129–179
DOI: https://doi.org/10.1070/im1999v063n01ABEH000232
(Mi im232)
 

This article is cited in 7 scientific papers (total in 7 papers)

A non-local theory of generalized entropy solutions of the Cauchy problem for a class of hyperbolic systems of conservation laws

E. Yu. Panov

Novgorod State University after Yaroslav the Wise
References:
Abstract: We consider a hyperbolic system of conservation laws on the space of symmetric second-order matrices. The right-hand side of this system contains the functional calculus operator $\tilde f(U)$generated in the general case only by a continuous scalar function $f(u)$. For these systems we define and describe the set of singular entropies, introduce the concept of generalized entropy solutions of the corresponding Cauchy problem, and investigate the properties of generalized entropy solutions. We define the class of strong generalized entropy solutions, in which the Cauchy problem has precisely one solution. We suggest a condition on the initial data under which any generalized entropy solution is strong, which implies its uniqueness. Under this condition we establish that the “vanishing viscosity” method converges. An example shows that in the general case there can be more than one generalized entropy solution.
Received: 03.07.1997
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: E. Yu. Panov, “A non-local theory of generalized entropy solutions of the Cauchy problem for a class of hyperbolic systems of conservation laws”, Izv. Math., 63:1 (1999), 129–179
Citation in format AMSBIB
\Bibitem{Pan99}
\by E.~Yu.~Panov
\paper A~non-local theory of generalized entropy solutions of the Cauchy problem for a~class of hyperbolic systems of conservation laws
\jour Izv. Math.
\yr 1999
\vol 63
\issue 1
\pages 129--179
\mathnet{http://mi.mathnet.ru//eng/im232}
\crossref{https://doi.org/10.1070/im1999v063n01ABEH000232}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1701842}
\zmath{https://zbmath.org/?q=an:0940.35137}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081487100007}
Linking options:
  • https://www.mathnet.ru/eng/im232
  • https://doi.org/10.1070/im1999v063n01ABEH000232
  • https://www.mathnet.ru/eng/im/v63/i1/p133
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:408
    Russian version PDF:210
    English version PDF:34
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024