Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 1, Pages 57–71
DOI: https://doi.org/10.1070/im1999v063n01ABEH000228
(Mi im228)
 

This article is cited in 14 scientific papers (total in 14 papers)

Renewal equations on the semi-axis

N. B. Engibaryan

Byurakan Astrophysical Observatory, National Academy of Sciences of Armenia
References:
Abstract: We consider the renewal equation
$$ \varphi(x)=g(x)+\int_0^x\varphi(x-t)\,dF(t), \qquad g\in L_1(0;\infty), $$
where $F$ is the distribution function of a non-negative random variable. If $F$ has a non-trivial absolutely continuous component or is a distribution of absolutely continuous type, then we prove that the solution of the renewal equation can be written as follows:
$$ \varphi=\varphi_1+\varphi_2+\biggl[\int_0^{\infty}x\,dF(x)\biggr]^{-1}\int_0^{\infty}g(x)\,dt, $$
where $\varphi_1\in L_1(0;\infty)$, $\varphi_2\in C[0;\infty)$, and $\varphi_2(+\infty)=0$
If $g$ is bounded and $g(+\infty)=0$, then $\varphi_1(+\infty)=0$.
The proof is based on the structural factorization of the renewal equation into absolutely continuous, discrete, and singular components.
Received: 18.02.1997
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: N. B. Engibaryan, “Renewal equations on the semi-axis”, Izv. Math., 63:1 (1999), 57–71
Citation in format AMSBIB
\Bibitem{Eng99}
\by N.~B.~Engibaryan
\paper Renewal equations on the semi-axis
\jour Izv. Math.
\yr 1999
\vol 63
\issue 1
\pages 57--71
\mathnet{http://mi.mathnet.ru//eng/im228}
\crossref{https://doi.org/10.1070/im1999v063n01ABEH000228}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1701838}
\zmath{https://zbmath.org/?q=an:0937.60083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081487100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0041543930}
Linking options:
  • https://www.mathnet.ru/eng/im228
  • https://doi.org/10.1070/im1999v063n01ABEH000228
  • https://www.mathnet.ru/eng/im/v63/i1/p61
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025