Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1976, Volume 10, Issue 6, Pages 1333–1338
DOI: https://doi.org/10.1070/IM1976v010n06ABEH001837
(Mi im2264)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a metric property of analytic sets

V. K. Beloshapka
References:
Abstract: Let $H$ be an algebraic set in $\mathbf C^n$ containing the origin and let $S=\{z\in\mathbf C^n:|z|=1\}$ be the unit sphere.
Conjecture. The diameter of one of the connected components of $H\cap S$ is greater than one.
In this article it is shown that this is false if the requirement that $H$ be algebraic is weakened to the demand that the projections onto the coordinate planes be open. If, however, $S$ is replaced by the boundary of the unit polydisc, then the conjecture holds and the proof uses only the openness of the projection.
Bibliography: 3 titles.
Received: 16.01.1976
Bibliographic databases:
UDC: 517.5
MSC: 32C25
Language: English
Original paper language: Russian
Citation: V. K. Beloshapka, “On a metric property of analytic sets”, Math. USSR-Izv., 10:6 (1976), 1333–1338
Citation in format AMSBIB
\Bibitem{Bel76}
\by V.~K.~Beloshapka
\paper On a~metric property of analytic sets
\jour Math. USSR-Izv.
\yr 1976
\vol 10
\issue 6
\pages 1333--1338
\mathnet{http://mi.mathnet.ru//eng/im2264}
\crossref{https://doi.org/10.1070/IM1976v010n06ABEH001837}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=454054}
\zmath{https://zbmath.org/?q=an:0342.32007}
Linking options:
  • https://www.mathnet.ru/eng/im2264
  • https://doi.org/10.1070/IM1976v010n06ABEH001837
  • https://www.mathnet.ru/eng/im/v40/i6/p1409
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:310
    Russian version PDF:151
    English version PDF:12
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024