|
This article is cited in 3 scientific papers (total in 3 papers)
On monotone solutions of nonlinear ordinary differential equations of order $n$.
I. T. Kiguradze
Abstract:
We establish in this paper existence and uniqueness criteria and study the behavior for $t\to +\infty$ of the solution $u(t)$ of the differential equation $u^{(n)}=f(t,u,u',\dots,u^{(n-1)})$, defined in the interval $(0,+\infty)$ and satisfying the conditions $\lim\limits_{t\to +0}u(t)=u_0$ $(-1)^{k}u^{(k)}(t)\geqslant 0$, for $t>0$ $(k=0,1,\dots,n-1)$.
Received: 26.11.1968
Citation:
I. T. Kiguradze, “On monotone solutions of nonlinear ordinary differential equations of order $n$.”, Izv. Akad. Nauk SSSR Ser. Mat., 33:6 (1969), 1373–1398; Math. USSR-Izv., 3:6 (1969), 1293–1317
Linking options:
https://www.mathnet.ru/eng/im2242https://doi.org/10.1070/IM1969v003n06ABEH000848 https://www.mathnet.ru/eng/im/v33/i6/p1373
|
Statistics & downloads: |
Abstract page: | 331 | Russian version PDF: | 108 | English version PDF: | 6 | References: | 40 | First page: | 1 |
|