Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1998, Volume 62, Issue 6, Pages 1221–1279
DOI: https://doi.org/10.1070/im1998v062n06ABEH000224
(Mi im224)
 

This article is cited in 15 scientific papers (total in 15 papers)

Graphs with projective suborbits. Exceptional cases of characteristic 2. I

V. I. Trofimov
References:
Abstract: This paper is the first of a series where we complete the description of finite vertex stabilizers for connected graphs with projective suborbits and, as a corollary, of vertex stabilizers for finite connected graphs in groups of automorphisms that act transitively on 2-arcs. In this part we complete the treatment of the case when the group acts transitively on 3-arcs.
Received: 25.12.1996
Bibliographic databases:
MSC: 05C25
Language: English
Original paper language: Russian
Citation: V. I. Trofimov, “Graphs with projective suborbits. Exceptional cases of characteristic 2. I”, Izv. Math., 62:6 (1998), 1221–1279
Citation in format AMSBIB
\Bibitem{Tro98}
\by V.~I.~Trofimov
\paper Graphs with projective suborbits. Exceptional cases of characteristic~2.~I
\jour Izv. Math.
\yr 1998
\vol 62
\issue 6
\pages 1221--1279
\mathnet{http://mi.mathnet.ru/eng/im224}
\crossref{https://doi.org/10.1070/im1998v062n06ABEH000224}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1680850}
\zmath{https://zbmath.org/?q=an:0930.05049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081370400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22644450561}
Linking options:
  • https://www.mathnet.ru/eng/im224
  • https://doi.org/10.1070/im1998v062n06ABEH000224
  • https://www.mathnet.ru/eng/im/v62/i6/p159
    Cycle of papers
    This publication is cited in the following 15 articles:
    1. Pablo Spiga, “An overview on vertex stabilizers in vertex-transitive graphs”, Boll Unione Mat Ital, 2024  crossref
    2. V. I. Trofimov, “A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut(Fi22) Which Has a Nontrivial Stabilizer of a Ball of Radius 2”, Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S300–S304  mathnet  crossref  crossref  elib
    3. Spiga P., “An Application of the Local C(G, T) Theorem To a Conjecture of Weiss”, Bull. London Math. Soc., 48:1 (2016), 12–18  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Guo S. Li Ya. Hua X., “(G,s)-Transitive Graphs of Valency 7”, Algebr. Colloq., 23:3 (2016), 493–500  crossref  mathscinet  zmath  isi  scopus
    5. M. Giudici, L. Morgan, “A class of semiprimitive groups that are graph-restrictive”, Bulletin of the London Mathematical Society, 2014  crossref  mathscinet
    6. C.H.eng Li, Ákos Seress, Sh.J.iao Song, “s-Arc-transitive graphs and normal subgroups”, Journal of Algebra, 2014  crossref  mathscinet  scopus  scopus
    7. Cai Heng Li, Hua Zhang, “On Finite 2-Path-Transitive Graphs”, J. Graph Theory, 2012, n/a  crossref  mathscinet  isi  scopus  scopus
    8. Praeger Ch.E. Spiga P. Verret G., “Bounding the Size of a Vertex-Stabiliser in a Finite Vertex-Transitive Graph”, J. Comb. Theory Ser. B, 102:3 (2012), 797–819  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Spiga P., “On G-locally primitive graphs of locally Twisted Wreath type and a conjecture of Weiss”, J Combin Theory Ser A, 118:8 (2011), 2257–2260  crossref  mathscinet  zmath  isi  elib  scopus
    10. Trofimov V.I., Weiss R.M., “The group E-6(q) and graphs with a locally linear group of automorphisms”, Mathematical Proceedings of the Cambridge Philosophical Society, 148:Part 1 (2010), 1–32  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    11. Trofimov V.I., “Supplement to “The group E-6(q) and graphs with a locally linear group of automorphisms” by V. I. Trofimov and R. M. Weiss”, Mathematical Proceedings of the Cambridge Philosophical Society, 148:Part 1 (2010), 33–45  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    12. Ivanov A.A., Shpectorov S.V., “Amalgams determined by locally projective actions”, Nagoya Mathematical Journal, 176 (2004), 19–98  crossref  mathscinet  zmath  isi
    13. V. I. Trofimov, “Graphs with projective suborbits. Exceptional cases of characteristic 2. IV”, Izv. Math., 67:6 (2003), 1267–1294  mathnet  crossref  crossref  mathscinet  zmath  isi
    14. V. I. Trofimov, “Graphs with projective suborbits. Exceptional cases of characteristic 2. III”, Izv. Math., 65:4 (2001), 787–822  mathnet  crossref  crossref  mathscinet  zmath
    15. V. I. Trofimov, “Graphs with projective suborbits. Exceptional cases of characteristic 2. II”, Izv. Math., 64:1 (2000), 173–192  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:473
    Russian version PDF:226
    English version PDF:41
    References:94
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025