Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1969, Volume 3, Issue 6, Pages 1245–1249
DOI: https://doi.org/10.1070/IM1969v003n06ABEH000843
(Mi im2231)
 

This article is cited in 7 scientific papers (total in 7 papers)

Finite approximabiliyt of free products with respect to occurrence

N. S. Romanovskii
References:
Abstract: We shall say that a group $G$ belongs to a class $\Phi\mathrm{AB}_\omega$ if and only if for any finitely generated subgroup $H$ of $G$ and any element $g$ of $G$ that does not lie in $H$ there exists a homomorphism of $G$ into a finite group such that the image of $g$ does not belong to the image of the subgroup $H$. We prove that the class $\Phi\mathrm{AB}_\omega$ is closed under the operation of free multiplication.
Received: 25.12.1968
Bibliographic databases:
UDC: 519.4
MSC: 20F22, 20K30, 20E06
Language: English
Original paper language: Russian
Citation: N. S. Romanovskii, “Finite approximabiliyt of free products with respect to occurrence”, Math. USSR-Izv., 3:6 (1969), 1245–1249
Citation in format AMSBIB
\Bibitem{Rom69}
\by N.~S.~Romanovskii
\paper Finite approximabiliyt of free products with respect to occurrence
\jour Math. USSR-Izv.
\yr 1969
\vol 3
\issue 6
\pages 1245--1249
\mathnet{http://mi.mathnet.ru//eng/im2231}
\crossref{https://doi.org/10.1070/IM1969v003n06ABEH000843}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=257234}
\zmath{https://zbmath.org/?q=an:0211.34301|0215.10904}
Linking options:
  • https://www.mathnet.ru/eng/im2231
  • https://doi.org/10.1070/IM1969v003n06ABEH000843
  • https://www.mathnet.ru/eng/im/v33/i6/p1324
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:321
    Russian version PDF:106
    English version PDF:15
    References:61
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024