Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1973, Volume 7, Issue 1, Pages 131–144
DOI: https://doi.org/10.1070/IM1973v007n01ABEH001929
(Mi im2217)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the mean convergence of Fourier series in Legendre polynomials

V. P. Motornyi
References:
Abstract: In this paper we study the convergence of Fourier series in Legendre polynomials in the space $L_p$, if $1\leqslant p\leqslant4/3$ or $4\leqslant p<\infty$ (i.e. in the case when the Lebesgue constants are unbounded). The fundamental result consists in the fact that with the improvement of the differential-difference properties of the function, the convergence is less affected by the growth of the Lebesgue constant ($1\leqslant p\leqslant4/3$). For functions with sufficiently good differential-difference properties the partial sums of the Fourier–Legendre series give an approximation in the $L_p$ ($1<p\leqslant4/3$) metric of an order as good as the best.
Received: 10.07.1971
Bibliographic databases:
UDC: 517.512.6
MSC: Primary 42A20, 42A56; Secondary 41A50
Language: English
Original paper language: Russian
Citation: V. P. Motornyi, “On the mean convergence of Fourier series in Legendre polynomials”, Math. USSR-Izv., 7:1 (1973), 131–144
Citation in format AMSBIB
\Bibitem{Mot73}
\by V.~P.~Motornyi
\paper On the mean convergence of Fourier series in Legendre polynomials
\jour Math. USSR-Izv.
\yr 1973
\vol 7
\issue 1
\pages 131--144
\mathnet{http://mi.mathnet.ru//eng/im2217}
\crossref{https://doi.org/10.1070/IM1973v007n01ABEH001929}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=340940}
\zmath{https://zbmath.org/?q=an:0258.42019}
Linking options:
  • https://www.mathnet.ru/eng/im2217
  • https://doi.org/10.1070/IM1973v007n01ABEH001929
  • https://www.mathnet.ru/eng/im/v37/i1/p135
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:720
    Russian version PDF:595
    English version PDF:21
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024