Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1995, Volume 59, Issue 3, Pages 499–516
DOI: https://doi.org/10.1070/IM1995v059n03ABEH000022
(Mi im22)
 

This article is cited in 8 scientific papers (total in 8 papers)

Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic

P. A. Zalesskii

Institute of Technical Cybernetics, National Academy of Sciences of Belarus
References:
Abstract: We prove the analogue of the Kurosh subgroup theorem for closed normal subgroups of free constructions of profinite groups and also corresponding analogues of abstract structural results for closed normal subgroups of more general free constructions of profinite groups (amalgamated free products, HNN-extensions). The structure theorem is used to obtain a description of the congruence-kernel $C$ of the arithmetic lattice $\Gamma$ of the group of $K$-rational points $G=\mathbf G(K)$ of a semisimple connected algebraic group $\mathbf G$ of $K$-rank 1 over a non-Archimedean local field $K$.
Received: 15.04.1994
Bibliographic databases:
MSC: 20E18
Language: English
Original paper language: Russian
Citation: P. A. Zalesskii, “Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic”, Izv. Math., 59:3 (1995), 499–516
Citation in format AMSBIB
\Bibitem{Zal95}
\by P.~A.~Zalesskii
\paper Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic
\jour Izv. Math.
\yr 1995
\vol 59
\issue 3
\pages 499--516
\mathnet{http://mi.mathnet.ru//eng/im22}
\crossref{https://doi.org/10.1070/IM1995v059n03ABEH000022}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1347078}
\zmath{https://zbmath.org/?q=an:0896.20023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TJ19700003}
Linking options:
  • https://www.mathnet.ru/eng/im22
  • https://doi.org/10.1070/IM1995v059n03ABEH000022
  • https://www.mathnet.ru/eng/im/v59/i3/p59
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024