Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1969, Volume 3, Issue 5, Pages 1019–1026
DOI: https://doi.org/10.1070/IM1969v003n05ABEH000822
(Mi im2192)
 

This article is cited in 1 scientific paper (total in 1 paper)

Adèles and integral representations

Yu. A. Drozd
References:
Abstract: We apply the technique of adèles to study integral representations belonging to the same genus. We study the stable structure of genera and prove that if $L$ is a representation of a semisimple $Z$-ring such that each direct summand occurs at least twice in the decomposition of $L$ over the field of rational numbers, and if $M$ and $N$ are representations from the genus of $L$, then $M\oplus L^n\simeq N\oplus L^n$ implies that $M\simeq N$. For representations of a semisimple $Z$-ring $\Lambda$ we give a bound for the number of representations in a genus; the bound depends only on the rational algebra $\widetilde\Lambda=\Lambda\otimes Q$ and on the exponent of the group $\Lambda'/\lambda$ , where $\Lambda'$ is a maximal overring of $\Lambda$.
Received: 24.06.1968
Bibliographic databases:
UDC: 519.49
MSC: 20C10, 11S23, 11R56
Language: English
Original paper language: Russian
Citation: Yu. A. Drozd, “Adèles and integral representations”, Math. USSR-Izv., 3:5 (1969), 1019–1026
Citation in format AMSBIB
\Bibitem{Dro69}
\by Yu.~A.~Drozd
\paper Ad\`eles and integral representations
\jour Math. USSR-Izv.
\yr 1969
\vol 3
\issue 5
\pages 1019--1026
\mathnet{http://mi.mathnet.ru//eng/im2192}
\crossref{https://doi.org/10.1070/IM1969v003n05ABEH000822}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=255595}
\zmath{https://zbmath.org/?q=an:0208.04502|0212.38006}
Linking options:
  • https://www.mathnet.ru/eng/im2192
  • https://doi.org/10.1070/IM1969v003n05ABEH000822
  • https://www.mathnet.ru/eng/im/v33/i5/p1080
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024