Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1969, Volume 3, Issue 5, Pages 917–966
DOI: https://doi.org/10.1070/IM1969v003n05ABEH000810
(Mi im2189)
 

This article is cited in 2 scientific papers (total in 2 papers)

The Castelnuovo–Enriques contraction theorem for arbitrary dimension

B. G. Moishezon
References:
Abstract: In the present article we show that the $n$-dimensional generalization of the Castelnuovo–Enriques theorem concerning exceptional curves of the first kind on algebraic surfaces is valid in the category of minischemes over any algebraically closed field. The following result is deduced as a corollary: for every $n$-dimensional compact complex manifold $Y$ with $n$ algebraically independent meromorphic functions there exists a nonsingular minischeme $V$ over the complex field such that the complex manifold $V_\mathbf C$ canonically corresponding to $V$ coincides with $Y^*$.
Received: 17.03.1969
Bibliographic databases:
UDC: 513.6
Language: English
Original paper language: Russian
Citation: B. G. Moishezon, “The Castelnuovo–Enriques contraction theorem for arbitrary dimension”, Math. USSR-Izv., 3:5 (1969), 917–966
Citation in format AMSBIB
\Bibitem{Moi69}
\by B.~G.~Moishezon
\paper The Castelnuovo--Enriques contraction theorem for arbitrary dimension
\jour Math. USSR-Izv.
\yr 1969
\vol 3
\issue 5
\pages 917--966
\mathnet{http://mi.mathnet.ru//eng/im2189}
\crossref{https://doi.org/10.1070/IM1969v003n05ABEH000810}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=260749}
\zmath{https://zbmath.org/?q=an:0192.57802}
Linking options:
  • https://www.mathnet.ru/eng/im2189
  • https://doi.org/10.1070/IM1969v003n05ABEH000810
  • https://www.mathnet.ru/eng/im/v33/i5/p974
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024